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Abstract. Loop tiling is a well-known loop transformation that en-
hances data locality in memory hierarchy. In this paper, we initially
reveal two important inefficiencies of current analytical loop tiling mod-
els and we provide the theoretical background on how current analytical
models can address these inefficiencies. To this end, we propose a new
analytical model which is more accurate that the existing ones. We show-
case, both theoretically and experimentally, that the proposed model can
accurately estimate the number of cache misses for every generated tile
size and as a result more efficient tile sizes are opted. Our evaluation re-
sults provide high cache misses gains and significant performance gains
over gcc compiler and Pluto tool on an x86 platform.
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1 Introduction
Loop tiling is a loop transformation that exploits locality of data accesses in loop
nests; the reused data stay in the cache and thus the number of cache misses
is reduced. Although loop tiling does not always align with performance, it is
one of the key optimizations for memory-bound loop kernels. The selection of an
efficient tile size is of paramount importance as tiles of different sizes can lead
to significant variations in performance. In this paper, we define a tile size as
efficient if it achieves a reduced number of cache misses.

The two main strategies to address the tile size selection problem are ana-
lytical [16] and empirical [24]. The former refers to static approaches in which
the tile size is selected based on static code analysis of the loop kernel and the
memory configuration (number of caches, cache sizes, associativity, line size).
Typically, the analytical model outputs the cache misses as a function of tile
sizes, input size (of the executed kernel), and cache characteristics. The sec-
ond strategy refers to empirical (experimental-based) approaches that rely on
auto-tuning. In auto-tuning, the input program is executed multiple times as-
suming different tile sizes, until the best solution is found. The input program
is considered as a black-box and no information of the source code is extracted.
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In this paper, we first demonstrate two important inefficiencies of current
analytical models and provide the theoretical background on how current mod-
els can address these inefficiencies. Second, we propose a new more accurate
analytical model for loop tiling, for single-threaded programs.

The first drawback of current analytical models is that they do not accurately
calculate the tiles sizes and as a consequence additional unforeseen cache misses
occur (not captured by the model). The second drawback is that the tiles cannot
remain in the cache in most cases due to the cache modulo effect. This is because
the cache line size, cache associativity and data reuse of tiles, are not efficiently
taken into account. Therefore, current models cannot accurately calculate the
number of cache misses for each tile size, leading to sub-optimal tile sizes. On
the contrary, the proposed method provides efficient tile sizes by accurately
estimating the number of cache misses for each tile size.

Our experimental results show that by using our method it is possible to
estimate the number of cache misses with an accuracy of about 1% using sim-
ulation and about 3% and 5.5% by using the processor’s hardware counters on
L1 data cache and L3 cache, respectively, leading to more efficient tile sizes for
static loop kernels.

The remainder of this paper is organized as follows. In Section 2, the related
work is reviewed. The proposed methodology is presented in Section 3 while
experimental results are discussed in Section 4. Finally, Section 5 is dedicated
to conclusions.

2 Related Work
In [20], an analytical model for loop tile selection is proposed for estimating the
memory cost of a loop kernel and for identifying the optimal tile size. However,
cache associativity is not taken into account. In [8], the authors combine loop
tiling with array padding in order to improve the tile size selection process for
specific array sizes. In [4], authors use Presburger formulas to express cache
misses, but they fail to accommodate the high set associativity values of modern
caches. In [16], an improved analytical model is proposed where associativity
value is taken into account, but the cache hardware parameters (cache line size
and associativity) and data reuse, are not efficiently taken into account.

As we showcase in this work there is ample room for improvement in existing
analytical approaches, as cache line size and associativity and the arrays’ memory
access patterns, are not fully exploited.

Due to the problem of finding the optimum tile size is very complex and
includes a vast exploration space [9], in addition to general methods, a large
number of algorithm-specific analytical models also exist for Matrix-Matrix Mul-
tiplication (MMM) [12] [14], Matrix-Vector Multiplication [13], tensor contrac-
tions [15], Fast Fourier Transform [10], stencil [23] and other algorithms, but
the proposed approaches cannot be generalized. In particular, regarding stencil
applications, there has been a long thread of research and development tack-
ling data locality and parallelism, where many loop tiling strategies have been
proposed such as overlapped tiling [26] [5], diamond tiling [2] and others.

The second line of techniques for addressing the tile size selection problem
relies on empirical approaches. A successful example is the ATLAS library [25]
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which performs empirical tuning at installation time, to find the best tile sizes
for different problem sizes on a target machine. The main drawback in empirical
approaches is the enormous search space that must be explored.

Moreover, there are several frameworks able to generate tiled code with pa-
rameterized tiles such as PrimeTile [7] and PTile [1]. Parameterized tiling refers
to the application of the tiling transformation without employing predefined tiles
sizes, but inserting symbolic parameters that can be fixed at runtime [19]. In
[1], a compile-time framework is proposed for tiling affine nested loops whose
tile sizes are handled at runtime. In [19], authors present a formulation of the
parameterized tiled loop generation problem using a polyhedral set. Pluto [3]
is a popular polyhedral code generator including many additional optimizations
such as vectorization and parallelization.

In [6], a thorough study on the major known tiling techniques is shown. In
[21], authors use an autotuning method to find the tile sizes, when the outermost
loop is parallelised. In [11], loop tiling is combined with cache partitioning
to improve performance in shared caches. Finally, in [22], a hybrid model is
proposed by combining an analytical with an empirical model. However, this
model ignores the impact of set associativity in caches.

3 Proposed Methodology
3.1 Inefficiencies of Current Analytical Models

A. Current analytical models do not accurately calculate the tiles sizes
Current methods, such as [16] [20], calculate the number of cache lines occupied
by a tile, by using the following formula:

number.lines = d tile.size.in.bytes
line.size.in.bytes

e (1)

However, Eq. 1 is not accurate as different tiles (of the same size) occupy
a varied number of cache lines. Let us give an example (Fig. 1). Consider an
one-dimensional (1-d) array of 200 elements and non-overapping tiles consisting
of 25 elements each. Also consider that each array element is of 4 bytes and the
cache line size is 64 bytes. The array elements are stored into consecutive main
memory locations and thus into consecutive cache locations. Current methods
assume that each tile occupies two cache lines (d 25×464 e = 2) (Eq. 1), therefore
just two cache misses are assumed when loading the tile into the cache. However,
as it can be shown in Fig. 1, half of the tiles occupy two cache lines and the other
half occupy three cache lines.

16 32 48 64 80 96 112 128 144 160 176 192 208

0 25 50 75 100 125 150 175 200

1st tile
2 lines

2nd tile
3 lines

3rd tile
2 lines

4th tile
3 lines

5th tile
2 lines

6th tile
3 lines

7th tile
2 lines

8th tile
3 lines

Fig. 1. An 1-d array is partitioned into tiles. 25 element tiles occupy a varied number
of cache lines
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The number of cache lines occupied by a tile is given by Eq. 2, where a = 0
or a = 1, depending on the tile size and cache line size values.

number.cache.lines = d tile.size.in.bytes
line.size.in.bytes

e+ a (2)

There are cases where the tiles occupy a varied number of cache lines (e.g.,
in Fig. 1, a = 0 holds for some tile sizes and a = 1 holds for others) and cases
where the tiles occupy a constant number of cache lines.

To ascertain that the tiles remain in the cache, in Subsection 3.2, we show
that the cache size allocated must equal to the largest tile size value.

B. The tiles proposed by current analytical models cannot remain in
the cache Related works such as [20] assume that if the aggregated size of
the tiles is smaller than the cache size, then the reused tiles will remain in the
cache; however, this holds true only in specific cases because even the elements
of a single tile might conflict with each other due to the cache module effect.
An improved model is proposed in [16], where the cache associativity value is
taken into account, but still the tiles cannot remain in the cache in many cases,
leading to a significant number of unforeseen cache misses.

Let us showcase the above problem with another example, the well-known
Matrix-Matrix Multiplication (MMM) algorithm (Fig. 2). Although different
tiles of A and B are multiplied by each other, the tile of C is reused N/Tile
times (data reuse), where Tile is the tile size and N is the arrays size in each
dimension. The current analytical models, such as [16], will consider data reuse
in this case and therefore they will include this information to their cache misses
calculation model; therefore, current models do assume that the tile of C is
loaded just once in the cache, not N/Tile times, which is accurate. However,
the tile of C cannot remain in the cache unless all the following three
bullets hold (in current analytical models only the first condition is satisfied):

C A B

=
x

j loopj loop

i loop i loop k loop

k loop
for (ii=0; ii<N; ii+=Tilei)
for (jj=0; jj<N; jj+=Tilej)
for (kk=0; kk<N; kk+=Tilek)

for (i=ii; i<ii+Tilei; i++)
for (j=jj; j<jj+Tilej; j++)
for (k=kk; k<kk+Tilek; k++)
C[i][j] += A[i][k] * B[k][j];

Fig. 2. An example. Loop tiling for MMM algorithm

– Each tile must contain consecutive memory locations
The sub-rows of tile of C are not stored into consecutive main memory
locations and therefore cache conflicts occur due to the cache module effect.
A solution to this problem is array copying transformation; an extra loop
kernel is added prior to the studied loop kernel where it copies the input
array to a new one, in a tile-wise format; therefore, the tile elements are
stored in consecutive main memory locations.

– A cache way must not contain more than one tiles, unless they are
stored into consecutive memory locations.
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Assume an L1 data cache of 32KB 8-way associative and (Tilei, T ilej, T ilek) =
(112, 32, 32); the size of tile of C,A and B is 14336 (Tilei× Tilej × 4 bytes),
14336 and 4096 bytes, respectively (32768 bytes in total) and they occupy
(3.5, 3.5, 1) cache ways, respectively (each way is 4096 bytes), assuming that
each element is 4 bytes. Therefore, one cache way will be used to store part
of the tiles of C and A (Way-0 in Fig. 3). In this case, Way-0 will store part
of Tile of C and part of A; when the next tiles of A are loaded into the
cache, they will be stored into different cache lines and therefore part of the
C tile will be removed from the cache due to the cache module effect. This
problem does not occur when (Tilei, T ilej, T ilek) = (64, 64, 32), as the tiles
occupy (4, 2, 2) cache ways, respectively (Fig. 3).

For the reminder of this paper, we will be writing that a tile is written in a
separate cache way if an empty cache line is always granted for each different
modulo (with respect to the size of the cache) of the tile memory addresses,
e.g., in Fig. 3, the tile in red is written in two ’separate’ cache ways as an
empty cache line is always granted for each different cache modulo value.

Set 0

Set N-1

Way 0 Way 1 Way 2 Way 3 Way 4 Way 5 Way 6 Way 7

256-bit

Set 0

Set N-1

Way 0 Way 1 Way 2 Way 3 Way 4 Way 5 Way 6 Way 7

Fig. 3. An illustration of how tiles might be allocated to the cache, for the example
shown in Fig. 2. On the top, (T ilei, T ilej, T ilek) = (112, 32, 32) is shown, while in the
bottom (T ilei, T ilej, T ilek) = (64, 64, 32). Each tile is shown in a different colour.

– Extra cache space must be granted for the non-reused tiles

Even if the two aforementioned bullets hold, it is false to assume that the C
tile will remain in the cache just because the aggregated size of the three tiles
is smaller than the cache size. This is because there is no cache space allo-
cated for the next tiles of A and B; therefore, when the next tiles of A and B
are loaded into the cache they will evict cache lines from the tile of C (LRU
cache replacement policy is assumed). However, if (Tilei, T ilej, T ilek) =
(64, 64, 16) is selected instead of (Tilei, T ilej, T ilek) = (64, 64, 32), then
cache space for 2 tiles of A and B is allocated and therefore the Tile of
C will remain in the cache.

We evaluated the above assumptions on a PC (see Section 4) using
Cachegrind tool [17] (simulation) and the following tile sets (Tilei, T ilej, T ilek)
= (112, 32, 32), (64, 64, 32), (64, 64, 16) give (10.2, 9.8, 5.2) million dL1 misses
and (3.1, 3, 3, 7.4) Gflops, respectively (square matrices of size N = 1344).
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3.2 The Proposed Analytical Model
Our approach is given in Algorithm 1. The proposed method generates the iter-
ators to be tiled, their order as well as their tile sizes, for a given cache memory.

STEP.1: The iterators that loop tiling is applicable to are manually pro-
vided; not all the loops are eligible to loop tiling mainly because of dependencies.

Algorithm 1 Proposed Loop Tiling Algorithm

Step.1 Specify the iterators that loop tiling is eligible to (n iterators)
for (i=1,n) do

Step.2 Generate all different iterator orderings using i out of n iterators
for (each different ordering found in Step.2) do

Step.3 Construct Eq. 3. Eq. 3 holds all the tiles sizes that fit and remain in
the cache
if (If the tiles’ memory locations overlap) then

Step.4 Merge the tiles into one and update Eq. 3
end if
for (each different tile size) do

if (the tiles contain non-consecutive memory locations) then
Step.5 Either discard this tile size or use array copying transformation

end if
Step.6 Estimate the number of cache misses for each tile set

end for
end for

end for
Step.7 Choose the tile set achieving the minimum number of cache misses

STEP.2: The next step is to specify the iterators that loop tiling will be
applied to as well as their nesting level values. For example, in a loop kernel
with three iterators (i, j, k) eligible to loop tiling, such as the original (non-tiled)
version of MMM in Fig. 2, the following 15 loop tiling implementations will be
generated: (i), (j), (k), (i, j), (i, k), (j, i), (j, k), (k, i), (k, j), (i, j, k), (i, k, j),
(j, i, k), (j, k, i), (k, i, j), (k, j, i). All different orderings are processed so as not
to exclude any efficient implementations.

STEP.3: In Steps.3-6, the main part of the proposed loop tiling algorithm
takes place. First, a mathematical inequality is constructed holding the tile sizes
for which the tiles fit and remain in the cache:

m ≤ d Tile1
Li/assoc

e+ dTile1 next

Li/assoc
e+ ... + d Tilen

Li/assoc
e+ dTilen next

Li/assoc
e ≤ assoc (3)

where Tilei is the tile size in bytes, Li is the cache size in bytes, n is the
number of tiles, assoc is the Li associativity and m defines the lower bound of
the tile sizes and it equals to the number of arrays in the loop kernel. The tile
sizes not included in Eq. 3 are discarded as they cannot remain in the cache.

In Eq. 3, a separate tile exists for each array reference (in the loop kernel)
and thus an array might have multiple tiles. Furthermore, for each tile, we grant
cache space for its next tile too (to address the third bullet in section 3.1.2). Note
that the overlapping tiles are merged into Step.4. All the tiles contain consecutive
memory locations (1st bullet in Subsection 3.1.2). The value of (d Tile1

Li/assoc
e) is an
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integer representing the number of Li cache ways used by Tile1, or equivalently,
is an integer representing the number of Li cache lines with identical cache
addresses used for Tile1. Eq. 3 satisfies that the array tiles directed to the same
cache subregions do not conflict with each other as the number of cache lines
with identical addresses needed for the tiles is not larger than the assoc value
(second bullet in section 3.1.2).

Tilei which contains consecutive memory locations is given by Eq. 4:
Tilei = max.number.cache.lines× cache.line.size× element.size (4)

where cache.line.size is the size of the cache line in elements, element.size is
the size of the array’s elements in bytes and the max.number.cache.lines gives
the maximum number of cache lines occupied by the tile (Eq. 2).

Step.4: In this step, the overlapping tiles in Eq. 3 are merged to one, nor-
mally bigger tile, which consists of their union; if the tiles match, then the new
tile’s size remain unchanged. Step.4 is needed so as there are no tile duplicates
in the cache. For the rest of this paper we will write that two tiles overlap, if
their memory locations overlap.

Consider the example where the following two array references exist in the
loop body A[i][j − 2], A[i][j + 2] and j loop spans from 2 to N-2. By applying
loop tiling to j loop with tile size T, the 1st tile of the 1st array reference spans
within (0,T) and the 1st tile of the 2nd array reference spans within (4,T+4).
These tiles are merged and a single bigger tile is created of size (T + 4).

Step.5 in Algorithm 1: In Step.5, all the remaining tile sizes with no
consecutive memory locations are either discarded as they cannot remain in the
cache or array copying transformation is applied.

It is common practice to apply array copying transformation before loop
tiling in order all the tiles to contain consecutive memory locations. An extra
loop kernel is added prior to the studied loop kernel where it copies the input
array to a new one, in a tile-wise format. This adds an extra overhead and this
is why it is performance efficient only in limited number of loop kernels.

Step.6 in Algorithm 1: In Step.6, the number of cache misses is approxi-
mated theoretically, considering the cache hardware parameters, the array mem-
ory access patterns of each loop kernel and the problem’s input size. To do so,
we calculate how many times the selected tiles (whose dimensions and sizes are
known) are loaded/stored from/to the cache.

We are capable of approximating the number of cache misses because the
number of unforeseen misses has been minimised (the reused tiles remain in the
cache). This is because only the proposed tiles reside in the cache, the tiles are
written in consecutive memory locations, an empty cache line is always granted
for each different modulo and we use cache space for two consecutive tiles and
not one (when needed). Additionally,we refer to CPUs with an instruction cache;
in this case, the program code typically fits in L1 instruction cache; thus, it is
assumed that the shared cache or unified cache (if any) is dominated by data.

The number of cache misses is estimated by Eq. 5.
Num Cache Misses =

∑i=sizeof(Tiles.List)
i=1 (repetition i× cache.lines i) (5)

where repetition i gives how many times the array of this tile is loaded/stored
from/to this cache memory (given by Eq. 7), cache.lines i is the number of cache
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lines accessed when this tile traverses the array (given by Eq. 6) and Tiles.List
contains all the tiles that contribute to Eq. 5.

The Tiles.List is initialised with all the tiles specified in Eq. 3, after the
merging process (Step.3b) in Algorithm 1 (the ’next’ tiles are not included; the
only reason they exist in Eq. 3 is to grant extra cache space). There are cases
where not all the tiles contribute to Eq. 5 and this is why some tiles might be
deleted from the Tiles.List. This happens when an array has multiple array
references (in the loop body) and therefore multiple tiles. Thus, different tiles of
the same array might access memory locations that have already been accessed
just before and thus the tile resides in the cache; in this case, accessing the tile
will lead to a cache hit, not a miss.

The cache.lines value in Eq. 5 is given by

cache.lines =



N

Ty
×

j=M/Tx∑
j=1

(d
j × Tx

line
e − b

(j − 1)× Tx

line
c), row-wise data array layout

j=tiles∑
j=1

(d
j × (Tx× Ty)

line
e − b

(j − 1)× (Tx× Ty)

line
c), tile-wise

(6)

where (Tx, Ty) are the tile sizes of the iterators in the (x,y) dimension of
the array’s subscript, respectively, (N,M) are the corresponding iterators’ upper
bounds (for 1D arrays Ty = 1), line is the cache line size in elements, tiles is the
total number of the array’s tiles and (tiles = N/Ty×M/Tx) or (tiles = M/Tx)
whether for 2D/1D arrays, respectively.

Let us give an example for the first branch of Eq. 6, consider a 2D floating
point array and a tile of size (10 × 10) traversing the array in the x-axis. Also
consider that (line = 16) array elements. The first tile occupies 10 × (d 1016e −
b 0
16c) = 10 cache lines while the second tile occupies 10 × (d 2016e − b

10
16c) = 20

cache lines. Although the array’s tiles are of equal size, they occupy a different
number of cache lines. Eq. 6, gives the number of cache lines occupied in the
case where array copying has been applied and therefore the array is written
tile-wise in memory; in this case, the first tile lies between (0, 100), the second
between (100, 200) etc.

The repetition value in Eq. 5 is given by

repetition =
∏j=U

j=1
(upj−lowj)

Tj
×
∏k=Q

k=1
(upk−lowk)

Tk
(7)

where U is the number of new/extra iterators (generated by loop tiling) that
a) do not exist in the corresponding array’s subscript and b) exist above of the
iterators of the corresponding array, e.g., regarding the B tile in Fig. 2, this is
the ii iterator. Q is the number of new/extra iterators that a) do not exist in
the array and b) exist between of the iterators of the array, e.g., regarding the
A tile in Fig. 2, this is the jj iterator; the ii iterator forces the whole array of B
to be loaded N/Tile times, while the jj iterator forces the whole array of A to
be loaded N/Tile times.

4 Experimental Results
The experimental results are extracted in a host PC (Intel i7-4790 CPU at
3.60GHz, Ubuntu 18.04) and the codes are compiled using gcc 7.5.0 compiler.

The benchmarks used in this study consists of six well-known memory-bound
loop kernels taken from 4.1 PolyBench/C suite [18]. These are: gemm, mvm,
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gemver, Doitgen, Bicg and gesumv. The input size of the loop kernels is specified
with letter ’N’ (square matrices are taken of size N ×N).

Table 1. The error in cache misses is measured for five different tile sizes using Eq. 8
and the maximum value is shown.

dL1 cache
kernel Cachegrind Perf Cachegrind Perf

(HW counters) (HW counters)

gemm Input size N=1000 N=2000
Tile sizes (25,25,25), (40,40,25) (20,20,50),(25,25,25)

(-,2,-),(-,4,-),(25,25,40) (25,25,40),(-,2,-),(40,40,25)

Error 0.8% 2.8% 0.8% 2.9%

mvm Input size N=6000 N=9000
Tile sizes (-,2000), (-,1000), (6,1000) (-,2000), (-,1000), (6,1000)

(3,2000), (4,1000) (3,2000), (4,1000)
0.7% 2.8% 0.7% 2.7%

doitgen Input size N=128 N=256
Tile sizes (-,32,32,32), (-,16,16,64) (-,32,32,32), (-,16,16,64)

(-,16,64,16) (-,16,64,16)
(-,64,16,16),(-,16,16,32) (-,64,16,16),(-,16,16,32)

Error 0.9% 2.5% 0.9% 3.1%

gemver Input size N=6000 N=9000
Tile sizes (-,1500), (-,1000), (2,1000) (-,1500), (-,1000), (2,1000)

(3,1000), (1,1000) (3,1000), (1,1000)
Error 0.9% 2.9% 0.8% 2.9%

bicg Input size N=6000 N=9000
Tile sizes (3,1000), (1,1000), (2,1000) (-,1500), (-,1000), (2,1000)

(-,1500), (-,1000) (3,1000), (1,1000)
Error 0.9% 2.9% 0.8% 2.9%

gesumv Input size N=4000 N=8000
Tile sizes (2,800), (1,1000), (2,1000) (2,800), (1,1000), (2,1000)

(-,800), (-,1000) (-,800), (-,1000)
Error 0.9% 2.7% 0.9% 2.7%

L3 cache
Cachegrind Perf Cachegrind Perf

(HW counters) (HW counters)

N=3000 N=6000
(500,500,600), (-,250,-) (500,500,600), (-,100,-)

(500,500,500) (500,500,500)
(-,200,-),(600,600,300) (600,600,300), (-,75,-)

0.8% 5.4% 0.8% 5.8%

N=10000 N=12000
(100,2000), (50,2000), (100,2500) (20,2000), (40,2000), (80,2000)

(50,2500), (125,2500) (80,3000), (60,3000)
0.7% 1.9% 0.7% 2.0%

N=512 N=600
(-,512,256,512), (-,512,512,256) (-,600,300,600), (-,600,600,300)

(-,256,256,256) (-,300,600,600)
(-,256,512,256),(-,512,512,512) (-,300,300,600),(-,600,300,300)

0.9% 2.5% 0.9% 2.6%

N=10000 N=12000
(100,2000), (50,2000), (125,2000) (20,2000), (40,2000), (80,2000)

(50,1250), (80,1250) (80,1500), (60,1500)
0.8% 2.0% 0.8% 2.0%

N=10000 N=12000
(100,2000), (50,2000), (125,2000) (20,2000), (40,2000), (80,2000)

(50,1250), (80,1250) (80,1500), (60,1500)
0.8% 2.0% 0.8% 2.0%

N=8000 N=12000
(40,2000), (40,1000), (20,2000) (20,2000), (20,1500), (10,2000)

(20,1000), (25,2000) (30,2000), (30,1500)
0.9% 2.1% 0.9% 2.1%

4.1 Validation of the proposed methodology

In this sub-section we showcase that i) the tiles generated by the proposed
methodology fit and remain in the cache and ii) the proposed equations (Step.6)
can accurately estimate the number of cache misses. To validate the proposed
method, we have applied the proposed methodology to L1 data cache (dL1)
(32KB, 8-way) and L3 cache (8MB, 16-way). The tile sizes and the iterators to
be tiled are given by Algorithm 1.

The number of cache misses is measured for five tile sizes and the maximum
error value is calculated (Eq. 8) using i) Cachegrind tool [17] (simulation) and ii)
Perf tool using the ’l1d.replacement’, ’LLC-load-misses’ and ’LLC-store-misses’
hardware counters.

error% = |cache.misses.measured−Eq. 5.misses|
Eq. 5.misses

× 100 (8)
Cachegrind and Perf give different cache misses values, because the perf mea-

sures the number of cache misses of all the running processes, not just the process
we are interested in.

In Table 1, we compare the dL1 and L3 misses as extracted from Eq. 5 against
the measurements from Cachegrind and Perf. As Table 1 indicates the proposed
equations provide roughly the same number of cache misses as Cachegrind. This
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means that first, the proposed tiles fit and remain in the cache and second, the
proposed equations give a very good approximation of the number of misses.

Regarding dL1, the error values are higher (about 3%) when using the dL1
hardware counter (Table 1), as other processes are loading/storing data from/to
this memory too. Note that Table 1 shows only the tile sizes that need roughly the
size of seven out of eight cache ways, or less; the tiles that use more cache space
give a much higher error value, which is up to 20%. Given that this inconsistency
holds only for the Perf measurements and not for Cachegrind, it is valid to assume
that this is due to the fact that other processes using the dL1. In this case, each
dL1 access of another process leads to an unforeseen miss.

For the same reason, on the right of Table 1, we show the tile sizes that
need roughly the size of 9 out of 16 L3 cache ways, or less. mvm, doitgen, bicg,
gesumv and gemver give a small L3 error value as their arrays fit and remain in
L3 even without using loop tiling. This is not the case for gemm and this is why
the error value in gemm is higher.

Table 2. Comparison over gcc on Intel i7-4790.

Tiling for dL1 only

dL1 perf. tile dL1 perf. tile Pluto
kernel misses gain size misses gain size perf.

gain gain gain

gemm N=600 N=900
x40.9 x3.7 (60,60,10) x61.0 x4.1 (60,60,10) 1.01

mvm N=9000 N=12000
x1.5 x0.98 (-,3000) x1.5 x0.98 (-,3000) x0.91

doitgen N=256 N=512
x34.2 x1.79 (64,64,16) x41.4 x1.93 (64,64,16) x0.99

gemver N=8000 N=12000
x2.0 x1.08 (-,2000) x2.0 x1.09 (-,2000) x0.89

bicg N=8000 N=12000
x2.0 x0.92 (-,2000) x2.0 x0.92 (-,2000) x0.42

gesumv N=8000 N=12000
x1.25 x0.91 (-,2000) x1.25 x0.91 (-,2000) x0.87

Tiling for dL1 and L3

L3 perf. tile L3 perf. tile Pluto
misses gain size misses gain size perf.
gain gain gain

N=1800 N=3400
(900*,60,900*) (850*,50,850*)

x57.2 x4.09 (60,60,10) x59.3 x4.2 (50,50,20) 1.01

N=9000 N=12000
x1.00 x1.01 (120,3000) x1.00 x1.01 (100,3000) x0.91

- - - - - - -

N=8000 N=12000
x1.00 x1.09 (80,2000) x1.00 x1.18 (60,2000) x0.89

N=8000 N=12000
x1.00 x1.03 (80,2000) x1.00 x1.04 (60,2000) x0.42

N=8000 N=12000
x1.00 x1.01 (40,2000) x1.00 x1.01 (30,2000) x0.87

4.2 Evaluation over gcc compiler and Pluto

In all cases, the six studied loop kernels are compiled using ’gcc -O2 -floop-block
-floop-strip-mine’ command and the generated binaries are those that the pro-
posed methodology is compared to. The ’-floop-block -floop-strip-mine’ option
enables gcc to apply loop tiling transformation. The C codes of the proposed
method are compiled using ’gcc -O2’ command.

On the left of Table 2, the proposed methodology has been applied to dL1
only. The proposed method provides significant dL1 miss gains at all cases but
performance gains just for gemm, doitgen and gemver. Reducing the number of
dL1 misses does not always align with performance; in this case, the selected tile
sizes for mvm, bicg and gesumv (which minimize dL1 misses) slighly increase
the number of L3 misses and this is why performance is degraded. Note that
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the dL1 miss gain is higher in gemm and doitgen comparing to the other loop
kernels, as all their tiles achieve data reuse; the tiles remain in L1 and also being
loaded many times from L1, highly reducing the number of L1 misses.

It is important to note that the baseline binary code that we compare our
method to for mvm,bicg and gesumv in Table 2, does not include loop tiling
(although the loop tiling option has been enabled, gcc disables its application in
gesumv, bicg and mvm, by considering it not performance efficient).

On the right of Table 2, the proposed methodology has been applied first to
dL1 and then to L3. Applying loop tiling for mvm, gemver, bicg and gesumv
just for L3 cache is pointless as their arrays fit and remain in the cache even for
very large input sizes and as a consequence the number of L3 misses cannot be
reduced. However, applying loop tiling for L3 to the implementations shown on
the left of Table2 is beneficial, as these implementations give a higher number of
L3 misses than the no tiled implementations. Regarding doitgen, applying loop
tiling to L3 cannot give any gain as the arrays fit in the cache. The ’*’ in Table 2
indicates that these iterators are interchanged.

The proposed methodology has been also evaluated using Pluto [3] (version
0.11.4). For a fair comparison, only the loop tiling phase of Pluto is activated.
Pluto applies square tile sizes of size 32 at all cases and this is why gcc perfomrs
better. Pluto is a powerful tool which is not limited to loop tiling and if we
enable all its phases, then it provides higher speedup values than gcc.

5 Conclusions and Future Work
In this article, we first demostrate two important inefficiencies of current analyt-
ical loop tiling models and provide insight on how current models can overcome
these inefficiencies. Second, we propose a new model where the number of cache
misses is accurately estimated for each generated tile size. This is achieved by
leveraging the target memory hardware architecture and data access patterns.

As far as our future work is concerned, the first step includes the validation
and evaluation of the proposed method to other CPUs. Second, we plan to work
towards correlating the number of cache misses with execution time.
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