
Evaluating System Identification Methods for
Predicting Thermal Dissipation of

Heterogeneous SoCs?

Joel Öhrling[0000−0001−5259−8436], Sébastien Lafond[0000−0002−5286−5343], and
Dragos Truscan[0000−0002−4367−6225]

Åbo Akademi University, Turku, Finland
joelohrling@gmail.com, {sebastien.lafond,dragos.truscan@}@abo.fi

Abstract. In this paper we evaluate the use of system identification
methods to build a thermal prediction model of heterogeneous SoC plat-
forms that can be used to quickly predict the temperature of different
configurations without the need of hardware. Specifically, we focus on
modeling approaches that can predict the temperature based on the
clock frequency and the utilization percentage of each core. We inves-
tigate three methods with respect to their prediction accuracy: a linear
state-space identification approach using polynomial regressors, a NARX
neural network approach and a recurrent neural network approach con-
figured in an FIR model structure. We evaluate the methods on an
Odroid-XU4 board featuring an Exynos 5422 SoC. The results show that
the model based on polynomial regressors significantly outperformed the
other two models when trained with 1 hour and 6 hours of data.

1 Introduction

In recent years, heterogeneous System-on-Chip (SoC) platforms have permeated
many types of IT systems [11] [16] due to the efficient balance they provide
between their computing power and power consumption. However, the challenge
they provide is in choosing the correct configuration for a specific application
workload. This is particularly difficult due to the very large configuration space.

Performing exhaustive testing on these types of systems becomes unfeasi-
ble, as the number of possible configurations is vast and requires the presence
of hardware setups to experiment with. In order to speed up the exploration
process, we investigate system identification methods to build a model of the
platform that can be used to predict the temperature of different configurations
quickly without the need of hardware.

Modeling a processor based on theoretical relationship between the power
and thermal dissipation requires extensive knowledge about the characteristics

? Part of this work was carried out with financial support from the Nordic Master
programme (contract NMP-2016/10169) and ECSEL-JU AIDOaRt project (grant
agreement No 101007350).



2 J. Öhrling et al.

of the processor and its environment. For some processors, numerical values
for the thermal characteristics of the materials and placement of the processor
parts are readily available. However, for many processors, these values are not
provided and have to be estimated or measured. Therefore, in this work, we
focus on modeling approaches that can predict the temperature based on the
clock frequency and the utilization percentage of each core. In this paper, we only
consider an asymmetric single-ISA CPU, however including other computational
units (like GPUs and DSPs) would only impact the number of configuration
parameters of the platform and require different types of workload.

To that extent, we evaluate three system identification methods with respect
to their prediction accuracy: a linear state-space identification approach using
polynomial regressors, a NARX neural network approach and a recurrent neural
network approach configured in an FIR model structure. We evaluate the three
methods on an Odroid-XU4 board featuring an Exynos 5422 SoC and perform
a set of experiments to evaluate their prediction accuracy using a 1-hour and
a 6-hour dataset. The Exynos 5422 SoC is composed of a big.LITTLE octa-
core mobile processor combining a Cortex-A15 and Cortex-A7 quad-core. We
acknowledge the Odroid XU4 is a few years old platform at the time of writing
this paper, however we consider that the proposed approach, with its benefits
and drawbacks, can be applied to other modern SoC platforms.

2 System Identification and Selection of Methods

System identification [10] is a field which deals with creating mathematical mod-
els of dynamical systems through statistical and machine learning approaches.

Several works have utilized neural networks for thermal modeling and have
been proposed in the past. Some of them [5, 12] propose white-box approaches
that are based on the theoretical equation that governs the power and heat
dissipation of a processor. These implement a bottom-up technique, where the
thermal model is based on the layout of the SoC, the conditions of the external
environment and the conductive properties of materials. These approaches simu-
late the thermal dissipation directly at chip-level with some level of abstraction.
This type of modeling relies heavily on the accuracy of the technical parameters
and how much detail is lost through abstractions and simplifications.

Another approaches [7, 8] use the thermal-electrical analogy, in which the
chip is broken down into small parts; each part is represented as a combination
of current sources, resistors and capacitors. A common tool for these is HotSpot
[19]. These approaches also rely heavily on knowledge about the characteristics
as well as the location of components within the chip.

Several researchers applied gray-box identification approaches to model the
thermal characteristics of a processor. Beneventi et al. [2] propose an approach
where a multi-core processor is modeled as a thermal-electrical circuit. In their
approach, the processor is divided into blocks that correspond to each core and
the section of the copper heat spreader directly above each core. The parame-
ters of the model are then optimized using an Output-Error approach. A similar



Title Suppressed Due to Excessive Length 3

approach was proposed by Aguia et al. [3]. They suggested an implementation
where the cores of a multi-core processor and the cache memory are represented
as blocks in a thermal-electrical-equivalent circuit. The subspace identification
method, N4SID, is then applied to find the optimal parameters for the model.
Another approach that utilizes a state-space identification method has been
proposed in [9]. Here, the researchers deploy a piece-wise linear subspace iden-
tification method that estimates a linear model for each temperature range.
Shetu et al. [14], however, suggest a different approach with a polynomial model
for approximating the temperature of a CPU. In their study, a thermal model
is constructed by creating polynomials based on the size and intensity of the
workload.

Several black-box approaches based on neural networks have been proposed.
Vincenzi et al. [17] and Sridhar et al. [15] predict thermal dynamics of an inte-
grated circuit using ARX linear neural networks. These approaches were shown
to be effective at simulating heat flow in three-dimensional and highly granu-
lar, integrated circuits. Zhang et al. [20] use a feed-forward neural network to
simulate the heat dissipation in processors By comparing the performance of a
Gaussian process model, a neural network model and a linear regression model
the researchers showed that the neural network model outperformed the lin-
ear model in terms of prediction accuracy by 30%, but was approximately three
times more computationally expensive. The Gaussian process model also showed
good prediction accuracy, at the expense of twice the computational overhead
of the neural network model.

Pérez et al. [13] compared recurrent and feed-forward neural network struc-
tures for thermal prediction of immersive cooling computer systems. The core
frequency and processor utilization measurements from the past minute were
used for temperature predictions.

Differently from the previous approaches which rely on power measurements
to predict the temperature of a processor, work has been done on predicting the
power dissipation of a processor. Walker et al. [18] predict the power consumption
of a multi-core processor by utilizing core frequencies, core voltages and event
counters (e.g., cycle counter, bus and cache accesses) to train a linear regression
model. Zhang et al. [21] built a linear regression model based on data collected
from a CPU, where they utilized the idle states and idle time of each core.
In addition, Balsini et al. [1] deploy a genetic algorithm to find the optimal
parameters for a function that represents the theoretical relationship between
power dissipation and quantities such as the core voltage and clock frequency.

In reality, as most models are constructed based on some knowledge and ob-
servations of a system, their corresponding modeling approaches can be viewed
as being gray-box approaches to some degree [6]. Most of the white-box and
gray-box approaches utilize power as an input variable or regressor. When the
thermal properties and the blueprint are not directly available for the ARM
CPUs, a white-box approach is not suitable. Many gray-box approaches also
relied on the close-to-linear relationship between temperature and power. This
also makes these approaches less appealing when the objective of this work is



4 J. Öhrling et al.

to perform modeling based only on measurable processor state variables, like
frequency and processor utilization. However, some previous works exploit the
theoretical relationship between frequency, voltage and utilization to estimate
the power dissipation of a processor [18] [1]. Therefore, combining such an ap-
proach with a linear model identification technique, such as the N4SID method
suggested in [3], was selected as an approach to be evaluated in this work.

Other approaches that have produced promising results are neural network-
based approaches [15,20]. A neural network in an ARX structure, could through
the addition of a nonlinear hidden layer, learn to replicate the nonlinear dynamics
of the heterogeneous processor. This would create a Hammerstein type of NARX
model. As the dynamics of a heterogeneous processor is rather deterministic and
the noise component in measurements can be expected to be rather low, an ARX-
based model was also selected as an approach to be evaluated in this work.

Recurrent neural network approaches have not seen much attention in ap-
plications related to thermal modeling of computing systems. However, the ap-
proach in [13], where where an RNN model is trained in an FIR structure, showed
promising results. We therefore selected such RNN-based model as an approach
to be evaluated.

The above approaches were not applied to create prediction models for ther-
mal dissipation of heterogeneous SoCs. Thus in this paper we provide two contri-
butions: a) we evaluate some of the proposed methods in the context of thermal
dissipation and b) we propose a new approach, polynomial N4SID, as a combi-
nation of two existing methods.

3 Evaluated methods

Based on the surveyed literature three methods have been selected for compari-
son. They will be described in the following: the first is a polynomial extension to
N4SID, which we denote hereafter as Polynomial N4SID, a nonlinear state-space
model structure using nonlinear regressors. The second is a NARX approach,
where a neural network is recursively trained to predict the temperature. The
third approach is an FIR model structure that utilizes an RNN layer to predict
the thermal dissipation. The performance of these three modeling approaches
has been assessed for two different lengths of training data: 1 hour and 6 hours.
The error of each model has been measured using Mean Squared Error (MSE)
as the metric. All three methods start with 10 regressors, i.e., the two cluster
frequencies and the utilization of each of the eight cores.

3.1 Polynomial N4SID

The first model structure is a parametric approach based on the state-space
identification method N4SID to estimate a linear state-space model. There is a
direct relationship between the power dissipation of a processor and its thermal
dissipation. This relationship could, therefore, be exploited to construct a linear
model of the system. This type of approach has been suggested in both [2] and [3].



Title Suppressed Due to Excessive Length 5

In this work, however, the objective is to compare modeling approaches that
can predict the temperature based on the clock frequency and the utilization
percentage of each core. The power consumption has a nonlinear relationship
with the core frequency, the core voltage and the core utilization. While the
dynamic power dissipation is linearly dependent on the core utilization, the core
utilization cannot, on its own, be used to describe it, as it is also dependent
on the core frequency and voltage. Therefore, a non-linearity relation had to be
introduced to approximate the power dissipation, in the form of new nonlinear
regressors as polynomial combinations of the core frequency and core utilization.

In our work, we approximate the relation between the voltage and the core
frequency as V ∝∼

√
f . The dynamic part of the power consumption is expressed

as Pdyn
∝∼ f2, while the static part of the power consumption was estimated to

be approximately proportional to f1.5. In this scenario, the core utilization is
expected to be directly proportional to the dynamic power consumption.

Using these approximate relationships as a basis, the polynomials were cre-
ated as the product of the core utilization to a power of 0 or 1 and the core
frequency to a power of between 1 and 3 in increments of 0.5. This was per-
formed for each core and resulted in 58 new nonlinear regressors with a total of
68 regressors, including the original 10.

The N4SID algorithm does not have many parameters that can be tuned.
However, the model order can be viewed as a hyperparameter. In this implemen-
tation, the selection of nonlinear regressors can also be considered as hyperpa-
rameters. Optimization of the utilized regressors was performed using correlation
analysis and grid search.

A randomized search was performed over 500 iterations on values measured
over a one hour workload execution time, as describe in Section 4. In each iter-
ation, three random combinations of core frequency to a power between 1 and 3
and core utilization to a power of 0 or 1 were selected. The combinations were
then applied to the regressors belonging to each core to create the new regres-
sors. At the end of each iteration, the average mean square error (MSE) was
measured. Using the results, a pair-wise correlation analysis was performed to
detect overall contribution of each regressor to the error. Figure 1 shows that
most of the regressors with only a single frequency component showed a positive
correlation. That is, they increased the error when they were utilized. Those that
showed a negative correlation produced a decrease in the error when they were
utilized. The regressors with a positive correlation were therefore removed from
the regressor set.

Grid search and cross-validation were performed as an additional reduction
step. During the grid search, the model order was set to 5 for all iterations. This
was implemented to reduce computational time. The model order that produces
the best performance was, however, expected to be higher than 5. An assump-
tion was made, though, that a fifth-order model would be representative enough
for this hyperparameter validation step. All permutations of the remaining re-
gressors were tested and the best regressor configuration was saved. The best



6 J. Öhrling et al.

Fig. 1: Correlation between regressor and MSE.

regressor set is shown in (1), where f is core frequency, u is core utilization and
i indicates the number of cores.

Unl = [f1.5ui, f
2ui, f

3ui, ui, f
2], i = 1..8 (1)

Fig. 2: Validation error and model order.

The final num-
ber of regressors uti-
lized in this approach
is 34. Furthermore,
these regressors were
selected for imple-
mentation for both
1-hour and 6-hour block
lengths. The average
validation error was
measured for orders
between 2 and 60.
Figure 2 shows the
model performance for
each order. We pre-
sented this approach
in detail in [4].

3.2 Hammerstein-
NARX

The second model structure chosen was an NARX approach implemented as an
artificial neural network. As shown by Zhang et al. [20] and Sridhar et al. [15], a



Title Suppressed Due to Excessive Length 7

neural network can be trained to predict the temperature at the next time step
based on previous temperature values and some exogenous inputs that affect
the temperature. The two approaches were in this implementation combined
to create a Hammerstein-NARX structure. In this approach, a network with
one hidden nonlinear layer and one linear output layer has been constructed.
The inputs are the 10 regressors and their respective values shifted back in
time nx time steps. The nonlinear layer uses a sigmoid activation function to
approximate the nonlinearity of the system. The output layer is a linear function
that produces a weighted sum of the values that are produced by the nonlinear
layer. The output from the linear output layer is fed back to itself for the past
ny time steps. Figure 3 shows how the network was structured during training.

Z−1

Z−1

u(n)

u(n − 1)

u(n − k)

(n + 1)ŷ

Z−1 Z−1

y(n − k) y(n − 1)
y(n)

Fig. 3: Offline Hammerstein-NARX structure used for training.

The network is trained in an offline configuration. This was chosen since the
online configuration suffered from the vanishing gradient problem during train-
ing. In an offline configuration, there is no recurrence in the network. Thus, the
vanishing gradient is not an issue. Early stopping on the validation performance
was implemented as well. The training was stopped when the error on the val-
idation set started to increase. When the training of the network was finalized,
the model structure was closed to produce the online layout shown in Figure 4.
Using this structure, the network can generate predictions of future values of the
temperature without relying on actual temperature measurements as inputs.

A few hyperparameters for this approach were selected based on the network
structures suggested in [20] and [15], as well as some empirical experience. The
activation function was selected to be a sigmoid function. Additionally, only a
shallow structure with one hidden layer was tested. The selected optimization
algorithm, Levenberg–Marquardt, was also not changed and its associated pa-
rameters were kept as the default for the trainlm function in Matlab’s Deep
Learning Toolbox. The Levenberg–Marquardt optimization algorithm was cho-
sen since it was the only algorithm that could successfully converge to a solution
during training on the offline configuration.



8 J. Öhrling et al.

�−1

�−1

�(�)

�(� − 1)

�(� − �)

(� + 1)�̂ 

�−1 �−1 �−1

(� − �)�̂  (� − 1)�̂  (�)�̂ 

Fig. 4: Online Hammerstein-NARX structure used to produce predictions.

In Figure 5, the validation performance for different layer sizes is shown.
For the 1-hour block length, 3 neurons in the hidden layer produced the best
validation performance on average. When training the model structure using 6
hours of data, 5 neurons yielded the lowest average prediction error.

Fig. 5: Validation error per size of the hidden nonlinear layer.

3.3 FIR-RNN

The final model structure that was assessed is based on a recurrent neural net-
work. This structure has one recurrent layer followed by a single linear layer.
This is based on an FIR structure, where the output is predicted solely based
on nx previous inputs.

This modeling approach is based on the structure utilized by Pérez et al. [13].
They found that a shallow structure with either GRU or LSTM layers produced
the best performance in their immersive cooling experiment. A similar approach



Title Suppressed Due to Excessive Length 9

is therefore implemented, as shown in Figure 6. A single layer of RNN neurons
is followed by a single linear layer. Each time step, the RNN layer takes the
input vector x, which corresponds to the 10 original regressors, and passes it
through the neurons to produce a vector of nonlinear states h that is passed to
the next time step. This is performed until the current time step is reached. The
hidden state vector h is then passed through a linear function to determine the
prediction ŷ. The nonlinear function that is applied inside each recurrent unit
differs depending on whether it is a GRU unit or an LSTM unit and on the
activation function that is utilized. Early stopping on the validation set has also
been utilized for this approach.

���

�(� − �)

ℎ(� − �)
���

�(� − � + 1)

���

�(� − 1)

ℎ(� − 1)
���

�(�)

(�)�̂ 
������

ℎ(�)

Fig. 6: FIR-RNN model structure.

The hyperparameters that were selected empirically were the optimizer and
activation function utilized in the RNN nodes. Pérez et al. [13] utilize the Nes-
terov Adaptive Momentum (Nadam) optimizer and a tanh activation function.
Thus, these parameters were selected in this implementation, as well.

The first hyperparameter that was assessed was the number of time steps
for the input that had to be considered. Since this approach is not recursive,
many time steps have to be included to capture the response of the system. To
estimate the settling time of the system, a step response was measured by going
from 0 to 100% utilization on all cores when the Odroid board was configured
to run at 1800 MHz and 1500 MHz for the big and little cluster, respectively.
Measurements shows that it takes approximately 100 seconds for the system to
settle. Therefore, it can be concluded that an FIR model would need the input
values for the past 100 seconds to be able to simulate the dynamics of the system
accurately.

The sample rate and the number of samples were tested through grid search
and cross-validation. Three other hyperparameters were also tested in conjunc-
tion: the unit type (LSTM or GRU), the number of units and the batch size.
For both the 1-hour and 6-hour block lengths, a sample length of 50 samples
spread out logarithmically between 0 and 100 seconds, performed the best. The
GRU unit also outperformed the LSTM unit using both block lengths. A batch
size of 1 and a unit size of 10 was found to be the optimal values for the 1-hour
block length. Using the longer block length, a batch size of 4 and a unit size of
18 generated the lowest average validation error.



10 J. Öhrling et al.

4 Experimental setup

For this study, a desktop experiment setup to benchmark and measure the tem-
perature of a heterogeneous processor was created. The experimental setup in
Figure 7 was used to generate and gather data in this study.

System Under Test. In this case the system under test was an Odroid XU4
Exynos 5422 board - a single-board computer allows the control of the frequency
on a per cluster basis between 200 MHz and 2000 MHz for the big cluster and
200 MHz and 1500 MHz for this little cluster. The operating frequency cannot
be controlled independently for each core inside the clusters. The voltage levels
can also be set for each cluster. However, in the Linux operating system for
this platform, these are set to static values for each operating frequency by the
kernel. The operating voltage levels are, therefore, not considered as a variable
in the implementations in this work.

The Odroid board has been configured to trigger a thermal throttle when
the core temperature for the big cores reaches 90◦C. This means that the pro-
cessor’s frequency governors will reduce the maximum available frequency when
the temperature is reached to prevent the processor from overheating.

Fig. 7: Overview of the experimental setup

Experimental workload utilized in this experiment was an RGB-YUV
image conversion. This image conversion was chosen as the workload because it
is a highly parallel workload that can be distributed to many cores.

A custom-built stress configures the platform by setting the utilization of each
core, the frequency of each cluster, and the amount of time for the execution
of the workload. Inside the application, a thread for each core in the system is
created. Each core thread runs its assigned workload independently from the
other cores.

The cluster frequencies are controlled using the Performance frequency gov-
ernor. The used application does not adjust the frequencies directly, it sets the



Title Suppressed Due to Excessive Length 11

maximum allowed frequency and the frequency governor then adjusts the fre-
quency accordingly.

The workload is in this work constant. Thus, the total number of possible
configurations can be calculated using Equation (2), where U is the number of
utilization levels, C is the number of cores, fb is the clock frequency of the big
cluster and fl is the frequency of the little cluster.

Nc = UCfbfl (2)

Each core has five different utilization levels, and the big and little clusters
have ten and six discrete clock frequency levels, respectively. For the imple-
mentation in this work, this yields a total of approximately 23 million possible
configurations of the heterogeneous SoC.

Thermal measurements Due to the absence of a core temperature sensor
for each core on the Odroid-XU4, a Melexis MLX90640 thermal camera was
used. The camera, with a resolution of 32x24 pixels, has been mounted close to
the SoC of the Odroid-XU4 in order to obtain a more accurate reading of the
temperature across the surface of the SoC. The camera sensor has a temperature
range of 40◦C to 300◦C and an accuracy of approximately ±1◦C.

Cooling Due to the use of the thermal camera, the heat sink the SoC was
removed and the external cooling was provided via a fan as direct cooling which
allowed the big cluster to be able to run at up to 1900 MHz. For this work, the
fan is constantly running at 100% speed and the environment temperature has
been kept constant at around 21 degrees.

Data collection A Raspberry Pi has been deployed as the control and data
collection unit. It controls the experimental workloads and captures the ther-
mal response. The data from the temperature sensor and the Odroid board
were sampled 32 times per second. This sample rate was selected since it is the
maximum sample rate for the thermal sensor. The data set for model selection
was created by executing a sequence of randomly selected configurations of the
Odroid board using the stress application mentioned above. The configuration
of the board was changed after a random amount of time in the range of 10
to 60 seconds. Both the selection of configuration parameters (cluster frequen-
cies and core utilization) and execution period followed a uniform distribution.
Throughout the experiment, the ambient temperature was kept steady at 21◦C.

5 Model Selection and Evaluation

The performance of the three selected modeling approaches has been assessed
for two different lengths of training data: 1 hour and 6 hours. The error of each
model has been measured using MSE as the metric. A flowchart of the entire
model identification methodology is shown in Figure 8.

The previously collected data set was divided into two sets, a development
set and a test set. The first 79% of the data became the development set. This
is the portion of the data that the models were trained on and the models’
hyperparameters were evaluated with. The last 20% of the data were chosen as



12 J. Öhrling et al.

Fig. 8: Flowchart of system identification procedure.

the test set. This is the data set that the final prediction error was assessed
upon and was not utilized for model training and selection. A small set of data
corresponding to 1% of the total data, lodged between the development and test
sets, is omitted to ensure that there is no interference between the development
set and the test set. Furthermore, the same data split was utilized for all three
modeling approaches.

1-hour performance. Using the hyperparameters and model structures
described in the previous section, the models were validated through 10-fold
cross-validation. Table 1 shows the result for the model on the 1-hour block
length.

Table 1: MSE for the implemented approaches trained with 1 hour of data.
Folds

Method 1 2 3 4 5 6 7 8 9 10 Avg
Polynomial N4SID 0.16 0.15 0.15 0.16 0.16 0.14 0.16 0.16 0.17 0.14 0.16
Hammerstein-NARX 0.53 1.28 0.61 0.74 0.74 0.55 0.65 0.85 0.79 0.54 0.73
FIR-RNN 2.28 2.14 1.42 1.44 1.05 2.12 1.60 1.30 2.77 0.80 1.69

Table 1 shows that the Polynomial N4SID approach showed the lowest aver-
age MSE. It can also be noted that the N4SID based approach has, by far, the
lowest variance, with a standard deviation of just 0.01. The other two approaches
had significantly worse performance on the test data.

Figure 9 shows the models’ performance on the test set when trained on the
seventh fold. This fold is selected since it is the fold that is the closest to the
average for all three approaches. The configuration parameters of the board were
randomly changed every 10 to 60 seconds. This means that approximately 57
different board configurations were utilized in the 2000 second window.



Title Suppressed Due to Excessive Length 13

Fig. 9: 1-hour model predictions on the last 2000 seconds of the test data.

Looking at the above figure, it can be seen that the Polynomial N4SID model
produced a good approximation of the true measured temperature. The other
two models produced less desirable results, but they still yielded a decent ap-
proximation of the true temperature. Furthermore, the Polynomial N4SID model
does not appear to have any particular problem areas or specific configurations
that it struggles with. The other two models and especially the FIR-RNN show
varying performance in regards to the different board configurations.

The average training time, average prediction time and the number of pa-
rameters were also measured for the three model structures. Table 2 shows that
the N4SID-based model structure has the lowest training and prediction time.
However, it is closely followed by the Hammerstein-NARX model structure. The
FIR-RNN model takes the longest both to train and to make predictions. The
training time is especially significant as it is about 100 times that of the other
two approaches.

6-hour performance. The same procedure was utilized for the 6-hour block
length. The models were validated through 4-fold cross-validation. Table 3 shows
the result for the model when trained with 6 hours of data.

The prediction error of the Polynomial N4SID model was reduced even fur-
ther when trained with 6 hours of data. It improved by approximately 50%
compared to its 1-hour performance. The FIR-RNN model, however, has im-



14 J. Öhrling et al.

Table 2: Average training time, average prediction time and number of
parameter for the 1-hour models.

Method Training time (s) Prediction time (s) Number of parameters
Polynomial N4SID 6 0.25 2144
Hammerstein-NARX 7 0.558 347
FIR-RNN 987 4.9 671

Table 3: MSE for the implemented approaches trained with 6 hours of data.
Folds

Method 1 2 3 4 Avg
Polynomial N4SID 0.11 0.11 0.11 0.11 0.11
Hammerstein-NARX 0.26 0.25 0.28 0.28 0.27
FIR-RNN 0.24 0.21 0.18 0.19 0.21

proved substantially. It yields a prediction MSE of 0.21 when trained with more
data. The Hammerstein-NARX model did also improve compared to the 1-hour
block length, but it did not see the same level of improvement as the recurrent
FIR model. Figure 10 shows the three modeling approaches’ performance on the
final 2000 seconds of the test set when trained on the second fold.

The average training time, average prediction time and the number of pa-
rameters for the three model structures on 6 hours of training data is shown
in Table 4. Just as for 1 hour of training data, the N4SID and NARX-based
models have significantly lower training and prediction times. Interestingly, the
Hammerstein-NARX model’s prediction time only increased slightly and is more
than twice as fast as the Polynomial N4SID model.

Table 4: Average training time, average prediction time and number of
parameter for the 1-hour models.

Method Training time (s) Prediction time (s) Number of parameters
Polynomial N4SID 60 1.34 3354
Hammerstein-NARX 67 0.65 571
FIR-RNN 2580 10.5 1639

6 Conclusion

The results of this study show that several types of modeling approaches can be
utilized to predict the temperature dissipation of a heterogeneous SoC. However,
Polynomial N4SID outperforms the others in its ability to learn the dynamics of
a system from a limited amount of data and to predict with higher accuracy the
thermal dissipation. We consider that this is because the non-linear regressors
are able to better estimate the quadratic relationship between frequency and
power consumption.



Title Suppressed Due to Excessive Length 15

Fig. 10: 6-hour model predictions on the last 2000 seconds of the test data.

Future work is intended to address some of the limitations of the current
study, for instance to consider several types of SoCs and workloads, to take into
account the ambient temperature and humidity, and to investigate the accuracy
of our models in a real-world setup without removing the heat sink and providing
constant active cooling.

References

1. Balsini, A., Pannocchi, L., Cucinotta, T.: Modeling and simulation of power con-
sumption and execution times for real-time tasks on embedded heterogeneous ar-
chitectures. ACM SIGBED Review 16, 51–56 (11 2019)

2. Beneventi, Bartolini, Tilli, Benini: An Effective Gray-Box Identification Procedure
for Multicore Thermal Modeling. IEEE Transactions on Computers 63(5), 1097–
1110 (May 2014)

3. Eguia, T.J.A., et al.: General behavioral thermal modeling and characterization
for multi-core microprocessor design. In: 2010 Design, Automation Test in Europe
Conference Exhibition (DATE 2010). pp. 1136–1141 (2010)

4. Öhrling, J., Truscan, D., Lafond, S.: Enabling Fast Exploration and Validation
of Thermal Dissipation Requirements for Heterogeneous CPU Platforms. In: 2021
IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW) (2021)



16 J. Öhrling et al.

5. Huang, W., et al.: Accurate, Pre-RTL Temperature-Aware Design Using a Pa-
rameterized, Geometric Thermal Model. IEEE Transactions on Computers 57(9),
1277–1288 (Sep 2008)

6. Janczak, A.: Identification of nonlinear systems using neural networks and polyno-
mial models : a block-oriented approach. Springer-Verlag Berlin Heidelberg (2005)

7. Lee, S., et al.: Thermoelectric-based sustainable self-cooling for fine-grained pro-
cessor hot spots. In: 15th IEEE Intersociety Conference on Thermal and Thermo-
mechanical Phenomena in Electronic Systems (ITherm). pp. 847–856 (May 2016)

8. Liu, W., et al.: On-chip thermal modeling based on SPICE simulation. In: Inter-
national Workshop on Power and Timing Modeling, Optimization and Simulation.
pp. 66–75. Springer (2009)

9. Liu, Z., et al.: Compact thermal modeling for packaged microprocessor design with
practical power maps. Integration 47(1), 71–85 (2014)

10. Ljung, L.: System identification : theory for the user. Prentice Hall PTR (1999)
11. McGuinness, P.: What’s next for mobile? Heterogeneous processing

evolves. Online at www.embedded-computing.com, https://www.embedded-
computing.com/embedded-computing-design/whats-next-for-mobile-
heterogeneous-processing-evolves (Aug 2014)

12. Paci, G., et al.: Exploring temperature-aware design in low-power MPSocS. Inter-
national journal of embedded systems 3(1-2), 43–51 (2007)

13. Pérez, J., et al.: Thermal prediction for immersion cooling data centers based on
recurrent neural networks. In: Yin, H., Camacho, D., Novais, P., Tallón-Ballesteros,
A.J. (eds.) Intelligent Data Engineering and Automated Learning – IDEAL 2018.
pp. 491–498. Springer International Publishing, Cham (2018)

14. Shetu, R.A., et al.: Workload-based prediction of CPU temperature and usage for
small-scale distributed systems. In: 2015 4th International Conference on Computer
Science and Network Technology (ICCSNT). vol. 01, pp. 1090–1093 (2015)

15. Sridhar, A., et al.: Neural network-based thermal simulation of integrated circuits
on gpus. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 31(1), 23–36 (2012)

16. Ullman, B.: Designing an ARM-based Cloud RAN cellular/wireless base
station. https://www.embedded.com/designing-an-arm-based-cloud-ran-cellular-
wireless-base-station/ (Dec 2013), accessed: 2021-05-28

17. Vincenzi, A., et al.: Fast thermal simulation of 2D/3D integrated circuits exploit-
ing neural networks and GPUs. In: IEEE/ACM International Symposium on Low
Power Electronics and Design. pp. 151–156 (2011)

18. Walker, M., et al.: Accurate and stable empirical CPU power modelling for multi-
and many-core systems. In: Adaptive Many-Core Architectures and Systems Work-
shop (15/06/18) (June 2018), https://eprints.soton.ac.uk/421995/

19. Wei Huang, et al.: HotSpot: a compact thermal modeling methodology for early-
stage VLSI design. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 14(5), 501–513 (May 2006)

20. Zhang, K., et al.: Machine Learning-Based Temperature Prediction for Runtime
Thermal Management Across System Components. IEEE Transactions on Parallel
and Distributed Systems 29(2), 405–419 (Feb 2018)

21. Zhang, Y., et al.: Towards Better CPU Power Management on Multicore Smart-
phones. In: Proceedings of the Workshop on Power-Aware Computing and Systems.
HotPower ’13 (2013)


