
Exploiting Similarity in Evolutionary Product
Design for Improved Design Space Exploration ?

Luise Müller[0000−0002−3924−5852], Kai Neubauer[0000−0003−4138−5114], and
Christian Haubelt[0000−0002−1568−5423]

Applied Microelectronics and Computer Engineering, University of Rostock, Germany
{luise.mueller,kai.neubauer,christian.haubelt}@uni-rostock.de

Abstract. The design of new products is often an evolutionary process,
where product versions are built on one another. This form of product
generation engineering (PGE) reuses some parts of previously developed
systems, while others have to be designed from scratch. In considera-
tion of subsequent design steps, i.e., verification, testing, and production,
PGE may significantly reduce the time-to-market as these steps can be
skipped for reused parts. Thus, deciding which components have to be
replaced or added to meet the updated requirements while preserving as
many legacy components as possible is one of the key problems in PGE.
A further aspect of PGE is the potentially more efficient search for valid
design candidates. An already optimized base system can be systemati-
cally extended by new functionality without the necessity to search the
entire design space. To this end, in this work, we propose a systematic
approach, based on Answer Set Programming, to exploit the ideas of
PGE in electronic system-level design space exploration. The idea is to
gather information on a previous design, analyze the changes to a new
version, and utilize the information to steer the search towards poten-
tially good regions in the design space. Extensive experiments show that
the presented approach is capable of finding near-optimal design points
up to 1,000 times faster than a conventional approach.

Keywords: Design Space Exploration · Heuristic · Answer Set Pro-
gramming · Evolutionary Design

1 Introduction

Embedded computer systems continuously advance into more areas of every-
day life such as medical devices, automotive industry, and telecommunications.
In addition to the growing number of application areas, the complexity of in-
dividual systems, influenced by the number of internal components, processes,
and heterogeneity, grow simultaneously. Due to the growing complexity, for each
system, a vast amount of design decisions has to be made that influence the
characteristics of the system. This includes the allocation of hardware resources,

? This work was funded by the German Science Foundation (DFG) under grant
HA 4463/4-2

2 L. Müller et al.

the partitioning of functionalities into hardware and software, and the synthe-
sis of the communication infrastructure. The aim is not only to design a valid
system, but also to optimize the resulting characteristics of a product. Further-
more, stringent time-to-market requirements, imposed by the pace of technolog-
ical progress, aggravate the problem of designing optimal products. Hence, an
efficient design space exploration is imperative to deliver high-quality products
in a reasonable timeframe. To this end, the design process is started at high
abstractions with lower degrees of detail mitigating complexity and allowing for
a quick exploration of promising design points. Although the DSE is started at
a high abstraction level to accelerate decision-making, the high complexity of
today’s computer systems prevents a complete exploration of the search space.
Hence, finding optimal design points remains complicated.

In reality, many electronic systems do not have to be developed entirely from
scratch. Instead, it is often aspired to have an entire product line with multiple
variants of the system as well as potential successor devices where only marginal
changes to the specification are made. Thus, the development of systems can
be recognized as an evolutionary process where product versions are built on
one another. This form of product design, called product generation engineering
(PGE) [1], reuses components of previous versions, while others have to be de-
signed from scratch. Deriving a version of an existing product can mitigate the
design time and limits verification and testing to the new parts of the system.

Assume, for example, the product line of current smartphone manufacturers.
Regularly, typically in a one-year interval, a new generation is released. Here, a
generation consists of a base device and derivatives that either have specialized
camera sub-systems, less processing capabilities, or varying display and battery
sizes. While the transition from one generation to the next may be larger than
the changes within one generation, core parts, such as the wireless interface (e.g.,
WiFi, Bluetooth, GSM) or parts of the operating system remain subject to reuse.

To exploit the general trend towards PGE, in this paper, we propose a
methodology that detects similarities of systems in an evolutionary design pro-
cess. The obtained information is subsequently used in the design process aiming
to keep implementation decisions. Our contribution is threefold:

1. We provide an extension to a state-of-the-art system-level design space ex-
ploration framework. The information of design decisions of previous product
versions is extracted and used to steer the search towards promising regions
in the design space exploration of the new product version.

2. We propose a declarative encoding of the problem through the utilization of
Answer Set Programming (ASP). This results in a succinct and elaboration
tolerant formulation that is easily extensible for future problems.

3. An extensive study is executed that evaluates the proposed approaches with
a varying number of changes. The results indicate a large improvement on the
quality of found solutions when compared to traditional approaches where
no information of previous generations can be used. While the overall ex-
ploration time is not reduced with the presented approach, the exploration
yields good solutions three orders of magnitude faster on average.

Exploiting Similarity in Evolutionary Product Design for Improved DSE 3

2 Related Work

In previous works, an effective design reuse model has been developed in [3] and
the question of reusability addressed in [6]. Therefore, the necessity of know-
ledge reuse in connection with product design tasks has been discovered already
decades ago. Nevertheless, the advantages of design reuse, like time savings, the
prevention of faults as well as an increased extensibility and predictability [3, 6]
are still valid nowadays and are targeted by the approach of this paper. To make
a design applicable for reuse, steps, such as documentation, standardization, pa-
rameterization and modularization are carried out [3] enabling that the concept
of design reuse is used in processes like design exchange, design evolution or
component-based design [3, 6].

As an example, the composition of existing subsystems can be implemented
by the use of hierarchical mapping encodings, which represent the assignment of
functionality to architectural resources [10]. While in that concept subsystems
are modeled and combined during the system synthesis steps, the proposed ap-
proach aims at identifying similarities between two product versions to reuse
parts from one another on design decision level. The synthesizing problem can
successfully be encoded using SAT [10] or answer set programming (ASP) [2, 11,
12]. Contrary to SAT, ASP is based on a closed-world assumption which allows
an efficient implementation in particular for densely connected networks and
multi-hop communication [2, 12].

As another application, the concept of PGE combines reuse mechanisms with
significant new developments during the generation of a new technical product.
That allows to build up generations of products based on a reference product.
Such product management expands the view by an economic perspective. Con-
crete technical use cases are illustrated by the product generations of the Porsche
911 or of the iPhone [1]. A platform-based design, moreover, enables the creation
of either module-based or scale-based product families. For those, metrics and
optimization algorithms have been classified [15].

To be able to make use of prior design decisions, similarities and differences
between two product versions have to be identified. In this approach, the compo-
nents of a specification graph are considered whereas in [4] a similarity analysis
and scoring is performed on call graphs from different control software projects.
In another approach, equivalent mappings for symmetrical transformations of
the architecture are determined, thus reducing the number of feasible solutions
[7].

3 Fundamentals

In this section, we will give an overview of the key prerequisites for the remainder
of the paper. To this end, we first present the underlying system model used
throughout the paper. Subsequently, the exploration approach is defined, that
includes the concept of Pareto optimality and the synthesis model used. Finally,
we introduce Answer Set Programming as the symbolic solving technology that
is employed to realize the concept.

4 L. Müller et al.

P1

R1

R2

T1

C1

m1,1

m2,1

m2,2

C2

T2

T3 m3,2

Architecture graphApplication graph Mapping options

P2m3,1

Fig. 1: An example of a specification graph

3.1 System Model

In this paper, we specify the system at the electronic system level (ESL). The
specification S = (A,H,M) is split into an application, modeling the behavior of
the system, and a hardware template constraining the structure of the system.
Both the application A = (VA, EA) and the hardware template H = (VH , EH)
are modeled through directed graphs and are connected through a set of mapping
options M , as depicted in Fig. 1. The application is modeled at a task-level
granularity with the set of vertices VA = T ∪C consisting of computational tasks
T and communication messages C. The edges EA ⊆ T ×C ∪C×T represent the
data flow of the application and therefore, the interdependencies of individual
tasks. Tasks can send and receive messages to exchange data packets according to
their behavior. Each message c ∈ C is required to be sent and received exactly
once, i.e., @c : {(c, ti), (c, tj)} ⊂ EA and @c : {(ti, c), (tj , c)} ⊂ EA. In other
words, only point-to-point communication among tasks can be modeled directly.
Hence, multicast communication is modeled through multiple messages that are
all sent by the same task but have different receivers.

The vertices of the hardware template VH = P ∪ R represent hardware de-
vices and are separated into processing elements P and routing units R. While
the processing elements are used to execute the tasks of the application graph,
the routing units cannot execute code but rather form the communication in-
frastructure. The latter is completed by the edges EH ⊆ VH × VH representing
links that establish communication channels between devices. In contrast to the
application graph, the links are not constrained, i.e., potentially each device may
be connected to another device through a link. In this work, we focus on net-
works on chip (NoC) with regular mesh topologies. However, in principle, the
same approach can be used to model bus-based or mixed hardware architectures.
Note that the bidirectional edges in Fig. 1 represent two individual links. For
example, the edge between routers R1 and R2 is modeled through the two links
l1 = (R1, R2) and l2 = (R2, R1).

The set of mapping options M ⊆ T × P connects the application and hard-
ware graphs. At least one mapping option m ∈ M = (ti, pj) is defined for each

Exploiting Similarity in Evolutionary Product Design for Improved DSE 5

task that signifies that the task ti may be executed on pj . For the messages, no
mapping options have to be specified explicitly as they are constrained impli-
citly by their sending and receiving tasks, respectively, and can be routed over
the entire communication infrastructure. The function w : M → N assigns an
integer number to each mapping option m = (t, p), signifying the worst case
execution time of the task t on the processing element p. Analogously, further
properties are assigned to the remaining elements of the specification graph to
model heterogeneous architectures. In the present paper, we define the functions
Pstat : VH → N, area : VH → N, and Edyn : M → N that assign the static power
consumption and area costs to each hardware device as well as the dynamic
energy requirements to each mapping option, respectively. Finally, a periodicity
P and a routing energy Er are assigned to the specification that specifies the
time, after which the execution is restarted and the energy a single message hop
consumes when routed over the network, respectively1.

In order to transform the specification into an implementation, a valid allo-
cation, binding, routing, and schedule have to be determined. The allocation α is
composed of devices and links from the heterogeneous architecture template H,
i.e., α ⊆ VH ∪EH that shall be used in the specific system implementation and
is separated into the device and link allocation αD and αL. The static binding
β ⊆ M and routing γ ⊂ C × 2EH select exactly one mapping option for each
task and a cycle-free route for each message, depending on the binding of the
sending and receiving tasks, respectively. Finally, the schedule τ assigns start
times to each task and message, i.e., τ : T ∪ C 7→ N.

3.2 Exploration Model

The aim of the design space exploration (DSE) is the determination of a set
of Pareto-optimal implementations of a specification S = (A,H,M). To this
end, each implementation x has to be evaluated according to a set of desired
objective functions. In this paper, we focus on the overall latency lat(x) of the
system, its area costs area(x), and the energy requirements E(x). Without loss
of generality, the DSE is formulated as a multi-objective minimization problem:

minimize f(x) = (lat(x), area(x), E(x)),
subject to:
x is a feasible system implementation.

The area costs of an implementation are calculated as the accumulated area costs
of each allocated hardware device, i.e., area(x) =

∑
d∈αD

area(d). The energy
requirement is the sum of the systems dynamic and static energy requirements:

E(x) = P ·
∑
d∈αD

Pstat(d) +
∑
m∈β

Edyn(m) +
∑
r∈γ

Er · hops(r).

1 For simplicity, we restrict the properties to integer values. The proposed ASPmT-
based [5] approach, however, also allows for real-valued properties in principle.

6 L. Müller et al.

Note that we refer the static energy to one iteration of the system, i.e., the
consecutive execution of all tasks within the given period P. The latency of
the system is defined as the difference between the maximum end time (τ(t) +
w((t, p)), i.e., depending on β) and the minimum start time (τ(t)):

lat(x) = max
(t,p)∈β

(τ(t) + w((t, p)))−min
t∈T

(τ(t)).

For the sake of brevity, we will forgo the exact details of the evaluation steps as
they are not particularly relevant for the proposed approach at hand. Instead,
we refer to [11] for further information.

As is common in multi-objective optimization problems with conflicting ob-
jectives fi, a single optimal solution generally does not exist as solutions are
not totally, but only partially ordered through the dominance relation �. The
dominance relation � is defined for n-dimensional quality vectors of two distinct
solutions. A candidate solution x dominates another solution y (x � y) if x
evaluates at least as good in every objective and better in at least one objective
compared to y. Without loss of generality, for a minimization problem with n
objectives, it is formally defined as follows:

x � y ↔ ∀i ∈ {1, . . . , n} : fi(x) ≤ fi(y) ∧ ∃j ∈ {1, . . . , n} : fj(x) < fj(y). (1)

A solution x is said to be Pareto-optimal if no dominating solution y exists.
Hence, by definition, Pareto-optimal solutions in the Pareto set XP for a given
problem are mutually non-dominated to each other: @x, y ∈ XP : x � y ∨ y � x.

3.3 Answer Set Programming

In the paper at hand, we implement the DSE with ASP, a programming paradigm
that stems from the area of knowledge representation and reasoning. In the fol-
lowing, we will introduce the basics of ASP that are imperative to understand the
core concepts of the present work. Based on the stable model semantics, ASP is
tailored towards NP-hard search problems. The input is a logic program formu-
lated in a first-order language that is typically separated into a general problem
description and a specific problem instance. While the former consists of rules
that define how new knowledge is inferred, the latter contains facts representing
the initial knowledge. A stable model, or answer set, of a logic program conforms
to a feasible variable assignment that can be inferred by the rules applied to the
facts. The knowledge is encoded by n-ary predicates, i.e., atoms, consisting of a
predicate name and n parameters. For example, the unary atom task(ti) may
encode the existence of a task ti ∈ T , while the binary atom map(t,p) indicates
that task t may be executed on the processing element p.

An ASP rule consists of a head and a body, and indicates that its head
can be inferred if the body holds. In its simplest form, a rule has an empty
body and therefore holds unconditionally, i.e., represent the facts to model ini-
tial knowledge. In contrast, a rule with an empty head, called an integrity con-
straint, forces the body not to hold. This way, specific assignments can be ex-
cluded from a stable model. To allow for the general problem description to

Exploiting Similarity in Evolutionary Product Design for Improved DSE 7

be applicable to each problem instance, the rules are encoded with variables,
generally indicated by uppercase letters in the encoding. For instance, the rule
1{bind(T,P) : map(T,P)}1 :- task(T). encodes the binding constraint. The
rule states that exactly one mapping option (t, p) ∈ M has to be selected for
each task t ∈ T . Internally, the rule is grounded into a variable-free representa-
tion resulting in a set of |T | individual rules. Afterwards, the variable-free atoms
are inferred according to the rules given by the problem definition. Therefore,
the ASP solver employs a conflict-driven clause learning (CDCL) strategy where
atoms are inferred subsequently until a conflicting assignment causes the gener-
ation of a conflict clause and the back-jump to a previous decision level.

The order, in which (variable-free) atoms are assigned, is decided by a heuris-
tic that is generally influenced by a generic set of rules, the characteristics of the
problem. These rules can be disparate and usually influence the performance
of the search differently for varying problem classes. The utilized ASP solver
clingo, for example, employs the heuristic Variable State Independent Decaying
Sum (VSIDS) [8] in its default configuration. Here, variables are assigned initial
activities that decay over time and increase if they appear in a learned con-
flict clause. Whenever the search branches, the solver selects the atom with the
highest activity. Although VSIDS is considered to be one of the most efficient
branching heuristics [8], it does not embody domain knowledge. In the paper
at hand, we will propose the use of domain specific heuristics to accelerate the
evolutionary product design. This is discussed in more detail in Sec. 4.3.

Note that an elaborate discussion of ASP solving and the detailed presenta-
tion of the encoding are out of the scope of this paper. The interested reader is
referred to [9, 5] and [12], respectively.

4 Similarity of Design Points

The aim of this project is to enhance the development step of the DSE by
applying the idea of evolutionary product design. The therefore required prior
knowledge is provided by a previously developed system representing a product
present on the market. It is given by the parent configuration in Fig. 2 and
is consisting of a specification and an implementation. It has to be noted that
this solution is not guaranteed to be optimal, but very good concerning its
application. Besides, Fig. 2 illustrates the steps of the proposed approach.

As a comprehensive example, a cellphone shall be improved. By modifying
the specification of the parent configuration, a new derived version is created,
namely the child configuration. Since all elements of the specification offer mod-
ification potential, it might be planned to extend the device functionality by
changing its application as well as to equip the cell phone with additional hard-
ware components, like a new processor or a second camera to improve its perfor-
mance. Depending on the extent of the modification and the affected sections,
a change in the specification can have a considerably large as well as nearly no
impact on the final implementation. To refer to the example given above, an ad-
ditional processor is only allocated, when a task is bound on it. If done so, addi-

8 L. Müller et al.

Parent
configuration

Child
configuration

Specification
+

Implementation

Modification

Specification

Pareto front
per time step

Determination of
the optimality

for each time step

Value
per time step

Heuristic Design Space Exploration of the child configuration

Design Space Exploration of the child configuration from scratch

Solution
candidate

Optimization

Pareto front
per time step

Determination of
the optimality

for each time step

Value
per time step

A

B

C

D

Analysis of the
similarity of the

implementations

Solution
candidate

Optimization
Analysis of the
similarity of the
specifications

Similarity
information

Use of heuristics

Fig. 2: Overview of the proposed approach (A+C) and its comparison (D) to a
state-of-art approach (B)

tional interconnections are required to ensure the communication ability of the
new processor. The modification stage is shown in block A in Fig. 2. The spe-
cific modifications applied in the experiments are given in section 5.

To determine the implementation of the child configuration, two approaches
are distinguished. Block B in Fig. 2 represents the DSE from scratch where
solution candidates are generated. Only valid intermediate solutions are kept and
further optimized concerning the factors latency, energy consumption and area
costs. This procedure is enhanced by the use of heuristics during the DSE shown
in block C in Fig. 2. The heuristic DSE aims at retaining as many design decisions
from the parent implementation as possible. To gain knowledge about reusable
concepts and design decisions from the parent configuration, the specifications
of both systems are analyzed to identify the similarities and differences and
thus, the reuse potential. The corresponding steps are explained in detail in the
following subsections.

Finally in block D, the results of both approaches are compared. Therefore,
for each the optimality of the Pareto front of the final and of all intermediate
solutions is evaluated and set in context to the time when the individual solution
has been found.

4.1 Analysis of the Specifications

Firstly, as shown in Fig. 2, all elements of the specification graph as well as all
characteristics of both configurations are examined and compared to identify
each similarity and difference. From the perspective of the child configuration,
for each instance of each component type, it is recorded whether it is a common
(equal), an own, i.e., newly added, or an unknown and therefore already deleted

Exploiting Similarity in Evolutionary Product Design for Improved DSE 9

(missing) component. These three cases are demonstrated by means of the com-
ponent type task in Code snippet 1. The comparison is carried out on the ba-
sis of the parameters of the component instances. A task is defined by three
constants: an ID, an application number, and a configuration assignment. If for
two instances all parameters except for the configuration constant are identical,
these present a single instance which is common to both systems. Similarly, in-
stances can be found which only exist in one configuration.

For all other component types in the specification, the procedure is the same.

1 % Equal tasks in both configurations
2 equal task(task(NUM,A,child)) :− task(NUM,A,child), task(NUM,A,parent).
3 % Missing tasks in child configuration with regard to parent configuration
4 missing task(task(NUM,A,child)) :− not task(NUM,A,child),

task(NUM,A,parent).
5 % Added tasks in child configuration with regard to parent configuration
6 added task(task(NUM,A,child)) :− task(NUM,A,child),

not task(NUM,A,parent).

Code snippet 1: The analysis of all instances of the component type task

4.2 Analysis of the Implementations

Besides the specification, the implementation of the parent configuration is
clearly determined and available. To be able to take on a design decision from
the previous system, the prospective decisions made to generate a solution can-
didate for the child configuration have to be evaluated. Like Fig. 2 illustrates,
the results from the evaluation alongside with the optimization objectives influ-
ence the selection of favorable solutions.

To compare two implementations, each decision, including the allocation,
binding, routing and scheduling, is considered. In the following Code snippet 2,
the decision on the task binding is taken as a representative case.

1 % Equally decided bindings in both configurations
2 equal bind(bind(M,task(T,A,child),processor(R,child))) :−

bind(M,task(T,A,child),processor(R,child)) ,
bind(,task(T,A,parent),processor(R,parent)).

3 % Not equally decided binding for equal tasks in both configurations
4 not equally bind(bind(M1,task(T,A,child),processor(R1,child)),

bind(M2,task(T,A,child),processor(R2,child))) :−
bind(M1,task(T,A,child),processor(R1,child)),
bind(M2,task(T,A,parent),processor(R2,parent)), R1!=R2.

5 % Missing binding in child configuration with regard to parent configuration
6 missing bind(bind(M,task(T,A,child),processor(R,child))) :−

bind(M,task(T,A,parent),processor(R,parent)), missing task(task(T,A,child)).
7 % Added binding in child configuration with regard to parent configuration
8 added bind(bind(M,task(T,A,child),processor(R,child))) :−

bind(M,task(T,A,child),processor(R,child)) , added task(task(T,A,child)).

Code snippet 2: The analysis of all instances of the decision on the binding

10 L. Müller et al.

It is identified by a mapping id and a corresponding task mapped to a certain
processor, each belonging to a configuration. Analogical to the scheme presented
in section 4.1, three result types are expected: equal, missing, added and evalu-
ated from the perspective of the child configuration. The similarity information
generated by use of the terms in Code snippet 1 is used to decide on similar-
ities in the implementations. For example, a task which was added or deleted
cannot be bound equally and therefore causes an added or a missing bind. Fur-
thermore, the type not equally is introduced to ensure an unambiguous evalu-
ation. Otherwise, for two configurations, which might have tasks and processors
in common, but do not share the same binding decision, bindings might be si-
multaneously classified as missing and added and, this way, be counted twice.
For all other decision types in the implementation, the analysis is done likewise.

4.3 Use of Heuristics during Design Space Exploration

Through analyzing the specifications and the implementations, an extensive
knowledge is built up which is particularly useful for the development of the new
derived product. It is assumed that, in the search space, a good solution for the
child configuration is to be found near to the design point of the implementation
of the parent configuration. Hoping that the optimal solution of the DSE for the
child configuration is similar to the implementation of the parent configuration,
the gained similarity information is used in heuristics to select appropriate de-
sign decisions from the previous system and set them as an initial design point.
Thus, the exploration starts in a defined area of the search space and is con-
trolled. At the same time, the search space is not restricted and no solution is
excluded. If there are similarities in the specifications, all related decisions made
in the development of the previous version are adopted and every variable as-
signment is preferably decided as previously done for the parent configuration.

Considering the example from section 4.2, the similarity information about
the decision on the task binding is taken up in a heuristic in Code snippet 3.

1 % Highest priority for deciding the binding equally to the parent configuration
2 #heuristic equal bind(bind(M,T,R)). [23,true]

Code snippet 3: The heuristic influencing the decision on the binding

In the implementation of the heuristic in ASP, a so-called modifier is used. It
prioritizes the individual term in a way that it, if possible, is assigned a specified
value (true or false) and evaluated earlier during the DSE. In the code sample,
the decision to set a binding equally compared to the parent configuration is
assigned a static priority of 23. At the same time, the decision on the allocation
is indirectly made when a hardware resource is used in a binding. In case of a
task that is only specified in one system, it is impossible to decide the binding
identically. Hence, another heuristic is set whose aim is to, at least, bind the task
to a common processor. Thus, the allocation of a new and additional resource
might become superfluous, if no task is bound to it in the final solution.

The design decision on the binding is considered in the following step of the
routing. If there is a common binding of a task on a processor, the communication

Exploiting Similarity in Evolutionary Product Design for Improved DSE 11

path to and from that processor is adopted from the parent configuration. This
approach is given in Code snippet 4. The heuristics deciding on the scheduling
is considering the execution order of the tasks and similarly implemented.

Further, the synthesis steps are executed in order. According to their prio-
rity, the binding decisions are determined first, followed by the routing and the
scheduling step. It is conceivable as well to decide on all equal elements first and
then to consider the differences. This offers the advantage of a clear separation
between the similarities and the differences.

1 % If binding was equally decided in both configurations , decide for the same
routing like in the parent−configuration

2 #heuristic equal reached(reached(comm(T1, , ,child), processor(P,child) ,
router(R,child))) : equal bind(bind(,T1,P)). [13,true]

3 #heuristic equal reached(reached(comm(,T2, ,child), router(R,child) ,
processor(P,child))) : equal bind(bind(,T2,P)). [13,true]

4 #heuristic equal reached(reached(C,router(R1,child),router(R2,child))) . [13,true]

Code snippet 4: The heuristic influencing the decision on the routing

Starting with a good implementation for the child configuration consisting of
adopted design decisions from the parent configuration, a faster converge to
optimal solutions is expected.

5 Experiments

The implementation of this project consists of ASP and C++ code as well as
bash scripts for the project execution. The tool clingo is used in version 5.2.2 [13].
To set time stamps and to interrupt a DSE at a certain time (timeout) the tool
runsolver in version 3.4 is used [14]. The experiments introduced subsequently
are tested on Intel Core i7-4770 CPUs with x86-64 architecture and 32 GiB
RAM. The surrounding environment is Ubuntu version 16.04.7 LTS.

5.1 Experimental Setup

As a setup, 24 parent instances of different characteristics are taken from a set
of test cases generated by an ASP-based benchmark generator [12]. A 3× 3 grid
structure, consisting of nine routers bidirectionally connected to each other and
additionally to one processor each, is common to all configurations while their
application graphs are structured differently. These are generated as “series-
parallel graphs” (SPG) having twelve different sizes in the range of 17 to 115
tasks.

To assume good solutions for the parent instances as a basis for the expe-
riments, a DSE for each has been executed for 48 hours. Randomly, one of the
best but not necessarily optimal solutions is taken as implementation of the par-
ent configuration. From each parent specification, ten modified child specifica-
tions are generated. The modification is composed of a randomly decided combi-
nation of different changes including the deletion, addition or exchange of com-
ponents. In the experiments, either tasks as representatives of the software side

12 L. Müller et al.

Table 1: Overview of the modification classes specifying the test cases
Change hardware

elements
Change software

elements
Combined
changes

pt pp pt pp pt pp
I 0 20 V 20 0 IX 20 20
II 0 40 VI 40 0 X 40 40
III 0 60 VII 60 0 XI 60 60
IV 0 80 VIII 80 0 XII 80 80

(pt), processors as elements of the architecture graph (pp), or combinations of
both are considered. Table 1 gives an overview about the chosen test cases.

In total, we have conducted 2 ∗ 24 ∗ 12 ∗ 10 = 5, 760 DSE runs for up to 30
minutes to explore the child configurations. This relatively short time was chosen
to be able to consider different modification classes and a sufficient number of
randomly generated modifications to obtain a generally valid statement. The
resulting fronts are evaluated concerning their ε-dominance [16]. Therefore, a
reference front, each consisting of the best solution front found up to a timeout of
the DSE with and without the use of heuristics, is generated. It is considered as
the optimal solution front. Additionally, all intermediate solutions found during
the DSE are assigned with a time stamp and evaluated as well. The results
together with their corresponding time stamps are plotted to identify the quality
improvements over time. Per test case and per parent configuration each, an
average curve is presented along with the individual results for the ten children.

5.2 Experimental Results

The test execution results in 24 diagrams per test case, each illustrating the
progression of the ε-dominance during the DSE with and without heuristics over
time for one parent instance. Until a timeout, which is set as a vertical line at
1,800s, is reached, each curve approximates an ε-dominance equals one. Matching
this value indicates that the respective solution front is covering the reference
front in every design point. Obtaining this result at an early time is the desirable
outcome. All in all, four types of curve progressions are identified and pictured
in Fig. 3.

The first and fourth type mark a course where either the scratch or the
heuristic curve is obviously faster approximating the value one. Whereas for the
third type, the heuristic curve is developing to low values fast, but is overtaken
by the scratch curve during the exploration. The second type represents a case
which does not allow a clear determination. Figure 4 aggregates the occurrences
of the four types given in Fig. 3 for all modification classes and considering the
24 configurations. The types 1 (= purple), 2 (= yellow), 3 (= light green), 4
(= dark green) are colored and rated in ascending order with type 4 indicating
the superiority of our proposed approach. Having this overview, a considerable
trend can be detected. The usefulness of the usage of heuristics depends on

Exploiting Similarity in Evolutionary Product Design for Improved DSE 13

0.9

1

1.1

1.2

1.3

1.4

1.5

0 200 400 600 800 1000 1200 1400 1600 1800

E
p
si
lo
n
-D

om
in
an

ce

Time [s]

Epsilon-dominance over time

Heuristic
Scratch

(a) Type 1 - Scratch better than Heuristic

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0 200 400 600 800 1000 1200 1400 1600 1800

E
p
si
lo
n
-D

om
in
an

ce

Time [s]

Epsilon-dominance over time

Heuristic
Scratch

(b) Type 2 - Both with similar performance

1

1.2

1.4

1.6

1.8

2

0 200 400 600 800 1000 1200 1400 1600 1800

E
p
si
lo
n
-D

om
in
an

ce

Time [s]

Epsilon-dominance over time

Heuristic
Scratch

(c) Type 3 - Heuristic with good start is
overtaken by Scratch

1

1.2

1.4

1.6

1.8

2

0 200 400 600 800 1000 1200 1400 1600 1800

E
p
si
lo
n
-D

om
in
an

ce

Time [s]

Epsilon-dominance over time

Heuristic
Scratch

(d) Type 4 - Heuristic better than Scratch

Fig. 3: The four resulting average curve types

the considered configuration. Noting that an increasing configuration number
signifies a larger amount of applications and tasks, the use of heuristics tend to
work better for large configurations. With an increasing size of a configuration,
the time to exhaustively explore the respective design space grows exponentially.
Thus, controlling the DSE by the use of any heuristics is essential to find good
solutions in a reasonable time. For large configurations, the proposed heuristics
provide excellent results, but it can not be evaluated how close these are towards
the real Pareto-optimal solution front because the design space is hardly explored
after 30 minutes. At the same time, the DSE for the configurations 1 and 2,
mainly finishing within the given time, shows satisfying results as well.

Considering the kind of modification, a few differences for cases with a lot of
changes like III, IV, VII or XI are visible, but in overall no clear classification is
identifiable.

In a second evaluation, the results for the configuration 11, which contains 55
tasks distributed over two applications, are analyzed in more detail. Table 2 lists
for every change type the time it takes to reach a specified ε-dominance value. A
table entry consists of a number of the explorations reaching the respective level,

14 L. Müller et al.

I II III IV V VI VIIVIII IX X XI XII

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Modification Class

C
o

n
fi

gu
ra

ti
o

n

Fig. 4: Summary of the occurrence of the result types from Fig. 3 (Purple -
Type 1; Yellow - Type 2; Light Green - Type 3; Dark Green - Type 4)

an average time value and a corresponding standard deviation. The behavior of
the DSE with and without heuristics is compared.

Thereby, two aspects become visible. At first, not all explorations even reach
an ε-dominance equal to two because large changes on the architecture graph
(pp and pp + pt), mainly in case of deletion of processors, cause the creation of
unsatisfiable child instances. Furthermore, the heuristic DSE for satisfiable child
instances, which are derived by purely changing the hardware side (pp), provides
significantly better results. This becomes more clear, the closer an ε-dominance
equal to one is approximated. More heuristic instances are reaching lower stages
and the results are found up to 1,000 times faster with lower deviations. These
cases are perfect examples for the type 4 from Fig. 3.

Secondly, the results when considering only the modifications on the applica-
tion graph (pt) are ideal representatives for type 3 from Fig. 3. By using the own
heuristics, the first three levels are reached within a few seconds. But as time
goes on, the DSE from scratch is more successful. At the same time, most cases
of both exploration types are finally not reaching an ε-dominance of one, which
means that different design points exclusively were found and several valid im-
plementations with good properties exist.

In general, Table 2 shows that the average times and the standard deviations
for the first solutions from the DSE with and without heuristics are similar.
If the heuristic DSE reaches a low ε-dominance, it takes a significantly shorter
time. Likewise, the deviation is lower. This is an important result, showing that
good results can be found at an early exploration stage without the necessity to
search the entire design space.

Exploiting Similarity in Evolutionary Product Design for Improved DSE 15

Table 2: Comparison of the influence of different change types
2 1.5 1.3 1.1 1.0

S H S H S H S H S H

pp

20
10

0.70 s
6.26 %

10
0.73 s
7.59 %

10
0.70 s
6.00 %

10
0.73 s
6.59 %

10
101.62 s
182.06 %

10
0.81 s
8.1 %

5
566.03 s
120.87 %

9
0.91 s
7.71 %

0
-
-

4
315.77 s
87.74 %

40
9

0.66 s
7.75 %

9
0.69 s
7.53 %

9
3.84 s

248.05 %

9
0.70 s
8.15 %

9
70.11 s
91.26 %

9
0.76 s
6.78 %

6
822.49 s
63.46 %

8
0.87 s

14.90 %

0
-
-

1
558.36 s

-

60
10

0.66 s
11.56 %

10
0.67 s

14.14 %

10
0.66 s

11.56 %

10
0.67 s

14.14 %

100
101.28 s
138.32 %

10
0.75 s

23.35 %

6
653.43 s
94,56 %

10
0.96 s

22.85 %

0
-
-

5
803.26 s
81.10 %

80
5

0.64 s
12.66 %

5
0.63 s

13.28 %

5
0.80 s

46.39 %

5
0.63 s

13.28 %

5
134.22 s
84.79 %

4
0.66 s

11.46 %

1
849.31 s

-

3
0.76 s

15.63 %

0
-
-

0
-
-

pt

20
10

0.74 s
12.97 %

10
0.76 s
7.89 %

10
6.85 s

132.70 %

10
0.80 s
5.77 %

10
175.78 s
105.01 %

10
0.93 s

10.76 %

9
694.56 s
78.29 %

6
14.43 s

227.26 %

1
1573.48 s

-

0
-
-

40
10

120.73 s
146.54 %

10
0.93 s

23.44 %

10
129.55 s
132.63 %

10
0.94 s

22.50 %

10
185.42 s
124.74 %

9
1.05 s

19.56 %

8
752.76 s
71.24 %

7
1.64 s

47.87 %

5
1627.63 s
14.51 %

1
49.54 s

-

60
10

0.77 s
20.52 %

10
0.81 s

18.08 %

10
52.94 s

172.62 %

10
0.90 s

16.33 %

10
175.09 s
111.62 %

10
1.74 s

112.44 %

9
453.64 s
53.79 %

8
305.82 s
174.50 %

4
1377.95 s
25.85 %

0
-
-

80
10

0.81 s
31.61 %

10
0.81 s

22.40 %

10
36.85 s
10.14 %

10
1.37 s

65.70 %

10
215.07 s
132.61 %

10
4.25 s

177.05 %

8
591.55 s
85.23 %

6
6.68 s

154.22 %

1
1380.83 s

-

2
6.50 s

54.11 %

pp

+
pt

20
10

0.80 s
36.66 %

10
0.73 s

11.02 %

10
20.09 s

154.13 %

10
0.74 s

10.09 %

10
123.77 s
144.38 %

10
0.89 s

19.69 %

9
328.02 s
72.60 %

9
1.13 s

33.53 %

1
1739.00 s

-

1
407.36 s

-

40
10

0.80 s
32.34 %

10
0.74 s

13.67 %

10
9.68 s

108.62 %

9
0.76 s

17.35 %

10
116.54 s
78.60 %

9
0.89 s

21.32 %

5
372.73 s
120.13 %

5
1.13 s

23.52 %

2
1730.17 s
0.84 %

1
1042.53 s

-

60
5

120.51 s
112.08 %

5
184,54 s
217.65 %

5
120.52 s
112.07 %

5
184.57 s
217.60 %

5
162.42 s
82.09 %

5
186.84 s
214.29 %

3
590.29 s
42.76 %

1
1.21 s

-

1
1099.08 s

-

0
-
-

80
6

152.49 s
243.92 %

6
0.80 s

16.71 %

6
188.32 s
211.23 %

6
0.94 s

24.13 %

6
412.54 s
144.05 %

5
1.13 s

19.42 %

3
435.72 s
63.92 %

3
5.03 s

87.86 %

1
1415.28 s

-

0
-
-

6 Conclusion

Within this paper, a systematic approach based on ASP to enhance the DSE of
embedded systems is proposed. It aims at supporting an evolutionary product
design process in the context of Product Generation Engineering. Exploiting the
similarities between a base system and its derivatives allows to identify parts that
can be reused unchanged. The gained domain knowledge is utilized in heuristics
to steer the search towards regions in the design space potentially containing
solutions with optimal properties.

To ensure a meaningful evaluation of the impact of the used heuristics, an
extensive amount of test cases, consisting of a variety of different configurations
and several systematically derived child instances, was used in the experiments.
As expected, the usage of heuristics in the DSE helps to find good solutions ear-
lier. While small systems are less likely to profit from the introduction of the
proposed heuristics, particularly in large system configurations, the application

16 L. Müller et al.

of heuristics shows a significantly high exploration quality. For the product de-
velopment, it is not required to find the optimal implementation because that
goes along with an inestimable long exploration time and high costs. Much more
preferably is a good solution found at an early time. Likewise, in the majority
of the test cases, excellent results were achieved just in a few seconds.

Finally, the implementation at hand can be extended by new heuristics and
further use cases. The experiments have shown that there is more potential
for identifying reusable parts, especially when analyzing how the structure of a
configuration is influencing its reusability.

References

1. Albers, A., et al.: Product generation development-importance and challenges from
a design research perspective. In: Proc. of ME. pp. 16–21 (May 2015)

2. Andres, B., et al.: Symbolic System Synthesis Using Answer Set Programming. In:
Proc. of LPNMR. pp. 79–91 (2013). https://doi.org/10.1007/978-3-642-40564-8 9

3. Duffy, S., et al.: A design reuse model. In: Proc. of ICED. pp. 490–495 (Aug 1995)
4. Fahimipirehgalin, M., Fischer, J., Bougouffa, S., Vogel-Heuser, B.: Similarity anal-

ysis of control software using graph mining. In: INDIN. vol. 1, pp. 508–515 (2019).
https://doi.org/10.1109/INDIN41052.2019.8972335

5. Gebser, M., et al.: Theory Solving Made Easy with Clingo 5. In: Proc. of ICLP.
pp. 2:1–2:15 (2016). https://doi.org/10.4230/OASIcs.ICLP.2016.2

6. Girczyc, E., Carlson, S.: Increasing design quality and engineering pro-
ductivity through design reuse. In: Proc. of DATE. pp. 48–53 (1993).
https://doi.org/10.1145/157485.164565

7. Goens, A., Siccha, S., Castrillon, J.: Symmetry in software synthesis. ACM TACO
14(2) (Jul 2017). https://doi.org/10.1145/3095747

8. Liang, J.H., et al.: Understanding VSIDS Branching Heuristics in Conflict-Driven
Clause-Learning SAT Solvers. In: Hardware and Software: Verification and Testing.
pp. 225–241 (2015). https://doi.org/10.1007/978-3-319-26287-1 14

9. Lifschitz, V.: What is Answer Set Programming? In: Proc. of AAAI. pp. 1594–
1597 (Jul 2008)

10. Neubauer, K., et al.: Supporting Composition in Symbolic Sys-
tem Synthesis. In: Proc. of SAMOS. pp. 132–139 (Jul 2016).
https://doi.org/10.1109/SAMOS.2016.7818340

11. Neubauer, K., et al.: Exact Multi-Objective Design Space Explo-
ration using ASPmT. In: Proc. of DATE. pp. 257–260 (Mar 2018).
https://doi.org/10.23919/DATE.2018.8342014

12. Neubauer, K., et al.: Exact Design Space Exploration Based on
Consistent Approximations. Electronics 9(7), 1057 (Jun 2020).
https://doi.org/10.3390/electronics9071057

13. Potassco: Clingo homepage, https://potassco.org/clingo/, accessed 13 Mar 2021
14. Roussel, O.: Controlling a solver execution: the runsolver tool. JSAT 7, 139–144

(Nov 2011). https://doi.org/10.3233/SAT190083
15. Simpson, T.W.: Product platform design and customization: Status and promise.

AI EDAM 18(1), 3–20 (2004). https://doi.org/10.1017/S0890060404040028
16. Zitzler, E., et al.: Performance assessment of multiobjective opti-

mizers: an analysis and review. IEEE TEVC 7(2), 117–132 (2003).
https://doi.org/10.1109/TEVC.2003.810758

