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1 Faculty of Information Technology and Communication Sciences (ITC)
Tampere University
Tampere, Finland

{jan.solanti,michal.babej,julius.ikkala,pekka.jaaskelainen}@tuni.fi
2 Nokia Technologies

Tampere, Finland
vinod.malamalvadakital@nokia.com

Abstract. Offloading the most demanding parts of applications to an
edge GPU server cluster to save power or improve the result quality is
a solution that becomes increasingly realistic with new networking tech-
nologies. In order to make such a computing scheme feasible, an applica-
tion programming layer that can provide both low latency and scalable
utilization of remote heterogeneous computing resources is needed. To
this end, we propose a latency-optimized scalable distributed heteroge-
neous computing runtime implementing the standard OpenCL API.
In the proposed runtime, network-induced latency is reduced by means
of peer-to-peer data transfers and event synchronization as well as a
streamlined control protocol implementation. Further improvements can
be obtained streaming of source data directly from the producer device
to the compute cluster. Compute cluster scalability is improved by dis-
tributing the command and event processing responsibilities to remote
compute servers. We also show how a simple optional dynamic content
size buffer OpenCL extension can significantly speed up applications that
utilize variable length data.
For evaluation we present a smartphone-based augmented reality ren-
dering case study which, using the runtime, receives 19x improvement
in frames per second and 17x improvement in energy per frame when
offloading parts of the rendering workload to a nearby GPU server. The
remote kernel execution latency overhead of the runtime is only 60 mi-
croseconds on top of the network roundtrip time. The scalability on
multi-server multi-GPU clusters is shown with a distributed large matrix
multiplication application.

1 Introduction

End-user applications are increasingly moving to battery-powered devices, and
at the same time, the computational complexity of their functionalities increase.
Offloading parts of applications to an edge node that resides within a short net-
work round-trip from the user device is a solution that is becoming more feasible
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with low-latency next-gen networking technologies such as 5G and WiFi6. The
overall concept of utilizing edge cluster resources across low latency network
links, called Multi-access Edge Computing (MEC) [29] is now an active field of
research and development.

In the application layer, the MEC paradigm calls for a solution that both
minimizes end-to-end latency overheads and allows utilizing all the heteroge-
neous compute resources in the remote edge cluster in a scalable and portable
manner. To this end, we propose a scalable low-latency distributed heteroge-
neous computing runtime that implements the standard OpenCL API [15] and
is targeted for usage by the application layer either directly or transparently as
a backend for higher level interfaces with OpenCL backends such as SYCL [16]
and oneAPI [10].

Unlike the previous distributed OpenCL projects, the proposed runtime called
PoCL-R focuses on latency and the edge cluster side scalability at the same time.
Furthermore, PoCL-R also provides support for low latency distributed stream-
ing applications where data is read from a remote input device to the end user
(client) device, which then needs to be further processed to produce the output.
With PoCL-R, the input data can be streamed directly to the remote compute
node, reducing the client’s bandwidth use and overall latency. Overall, a key
benefit of PoCL-R is that the whole edge cluster workload distribution can be
orchestrated from the client application logic side without application-specific
server-side software, thanks to the generality and power of the heterogeneous
OpenCL API.

We identify the following novel aspects in the runtime presented in this paper:

– Utilization of edge cluster compute resources with peer-to-peer (P2P) com-
munication and synchronization for improved compute scalability.

– Capability of supporting applications with both high performance and low
latency demands to support distributed compute offloading scenarios of MEC
with a wide complexity range.

– Enable transfers of input data straight from a producer server to the edge
cluster before passing it to the client device while still only utilizing the
standard OpenCL API’s features.

– A minimal (optional) OpenCL API extension that can improve transfer times
of dynamic-size buffers dramatically. This is especially useful for taking ad-
vantage of buffers with compressed data.

– The first distributed OpenCL runtime that is integrated to a long-maintained
widely used open source OpenCL implementation framework PoCL [13] and
is thus usable and extensible for anyone freely in the future.3

In order to test the latency of the runtime in a real-time context, we present
a real-time augmented reality mobile case study, which receives significant im-
provements in both frames per second (FPS) and energy per frame (EPF) by
offloading parts of the object rendering workload to a remote GPU server.The
edge compute cluster side performance is reported separately with a remote

3 The source code is available at http://code.portablecl.org/

http://code.portablecl.org/
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kernel execution latency overhead measurement and a multi-server multi-GPU
cluster scaling experiment.

The paper is organized as follows. Section 2 gives an overview of the PoCL-
R top level design and its usage aspects. Section 3 describes the most relevant
techniques in the proposed runtime to achieve the low latency while retaining
scalability. Section 4 lays out the results in terms of latency and throughput
measurements, and Section 5 presents the MEC offloading case study. Section 7
describes some plans for future work and concludes the paper.

2 Architecture

The focus of PoCL-R is on minimizing the end-to-end latency to enable high
quality user experience in responsive real-time edge cluster use scenarios as well
as enable scalable use of diverse compute resources in the cluster.

The whole application logic is defined in a single host application, as speci-
fied by the OpenCL standard. The application includes both the main program
running in the local device as well as the kernel programs that are executed on
local, or in the case of PoCL-R, remote OpenCL devices. The OpenCL standard
allows the kernel programs to be defined in a portable source code or an inter-
mediate language, and alternatively using target-specific binary formats. This
can be used to bypass long synthesis steps at application runtime when using
FPGA-based accelerators.

PoCL-R runtime is implemented as a standard client-server architecture. The
client is implemented as a special remote driver in Portable Computing Language
(PoCL) [13], an open source implementation of the OpenCL API with flexible
support for custom device backends. The remote driver acts as a “smart proxy”
that exposes compute devices on a remote server through the OpenCL platform
API the same way as local devices, making the use of remote devices in OpenCL
applications identical to using local devices at the program logic level. Features
of the remote devices depend on what their native drivers support.

A host application using the OpenCL API can use PoCL-R as a drop-in im-
plementation without recompilation. When the host application is linked against
PoCL-R, OpenCL calls are made to the PoCL-R client driver, which in turn
connects to one or multiple remote servers, each providing one or more remote
compute devices. The remote servers can form interconnected clusters visible and
controlled by PoCL-R as peers to avoid round-trips back to the client whenever
synchronization or data transfers are needed between the remote devices. The
application can identify remote devices by the device name string that contains
an additional ”pocl-remote”. This allows optimising choices of command queues
and kernel implementations.

The server side is a daemon that runs on the remote servers and receives
commands from the client driver, and dispatches them to the OpenCL driver of
the server’s devices accompanied with proper event dependencies.

The daemon is structured around network sockets for the client and peer
connections. Each socket has a reader thread and a writer thread. The readers
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Fig. 1: The information flow from an application to the PoCL-R daemon and be-
tween remote servers. Two different commands are illustrated, one that transfers
buffer contents from one remote node to another and one that doesn’t.

do blocking reads on the socket until they manage to read a new command,
which they then dispatch to the underlying OpenCL runtime, store its associated
OpenCL event in a queue and signal the corresponding writer thread. The server
writer thread iterates through commands in the queue and when it finds one
that the underlying OpenCL runtime reports as complete, writes its result to
the socket representing the host connection. Peer writers have separate queues,
but work otherwise similar to the server writer.Fig. 1 illustrates this architecture
and the flow of commands and data through it.

3 Latency and Scalability Optimizations

The following subsections describe the essential latency and scalability optimiza-
tion techniques of PoCL-R.

3.1 Peer-to-Peer Communication

PoCL-R supports transferring buffers directly between devices on the same re-
mote server (provided that the server’s OpenCL implementation supports it),
P2P transfers of buffers between servers, as well as distributed event signaling.

Fig. 2a illustrates the various possible links between the host application
running in the client device that communicates with remote servers and devices.
In a typical edge cluster use case, the client connection to the remote servers
is much slower than the interconnect between servers in the cluster, thus the
bandwidth savings versus transferring data always to the client application and
back to another remote device can affect the overall performance dramatically. In
addition, the number of network requests from the client are reduced drastically,
since the host application only needs to send the migration command to the
source server.
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3.2 Distributed Data Sourcing

When working with data that are not originally sourced from the client device,
they would normally have to be transferred to the client first, and then dis-
tributed to compute devices from there. With OpenCL’s custom devices feature
it is possible to wrap arbitrary data sources to appear as devices in the OpenCL
platform. Such devices can then utilize the P2P buffer migration functionality
to transfer input data directly to the compute device that needs it,.

Fig. 2b illustrates the difference between routing input data from a producer
device through the host application and sending it directly to the compute device
that needs it. In case the client application also needs the raw input data, some
extra bandwidth use is naturally incurred. This can be mitigated by compressing
the data in flight, at the cost of a slight latency and throughput overhead.

(a) Possible connections PoCL-R (b) Input data streaming

Fig. 2: Various connections between devices in a PoCL-R context. Roundtrips
to the client device are avoided when possible.

3.3 Low-Overhead Communication

The base of the client-server communication is a pair of raw TCP sockets. One
socket is dedicated to commands and the other to buffer data transfers, their
send and receive buffer sizes tuned for their respective purposes. To minimize
latency on the network level, TCP fast retransmission is enabled for both sockets.

While optimization of serialization protocols has been researched a lot and
some extremely low-overhead protocols such as FlatBuffers [9] and MessagePack
[7] have emerged, using a separate wire format for communication still adds
overhead both on the sending and receiving side. PoCL-R uses the in-memory
representation of commands as its wire format, avoiding this. The only added
data is a fixed-size integer indicating the length of the next command structure.

The trade-off of this approach is that all remote servers as well as the client
device running the host application need to have the same integer byte order.
In practice we consider this not a noticeable limitation after successfully test-
ing PoCL-R across a range of devices, from commodity mobile SoCs to PC and
server room hardware. A bigger hurdle is the OpenCL C application code it-
self, as OpenCL has no knowledge about buffer contents’ endianness and makes
mixed endianness related swapping the application writer’s responsibility [15]:



6 Jan Solanti et al.

Applications meant to work on platforms with mixed endianness need their ker-
nels to be adapted to account for the difference and swap the byte order of
multi-byte values stored in OpenCL buffers when crossing devices with different
byte orders.

3.4 Decentralized Command Scheduling

OpenCL provides command completion events as a synchronization mechanism
between commands. PoCL-R relies heavily on these for keeping execution in
sync across nodes with minimal overhead. Commands are pushed to the remote
servers immediately when OpenCL enqueue API calls are made by the client.
Event dependencies are mapped to platform-local events on each server and
events for commands running on other servers are substituted with user events.
This way the heterogeneous task graph based on event dependencies defined by
the application stays intact on the remote servers and the runtime can apply
optimisations utilizing the dependency rules outlined in [12].

In addition to the control and data connections to the client, each remote
server keeps a direct connection to each of its peers. This is used for peer-to-
peer buffer migrations and to signal event completions to other servers for use in
command scheduling as illustrated in Fig. 1. Thanks to this setup, enqueuing a
command that depends on a buffer produced by a command on a different device
only requires two network requests from the host application to the source server,
which then signals other servers as needed.

3.5 Dynamic Buffer Content Size Extension

OpenCL allows applications to allocate memory in the form of buffers whose
size is fixed once they are created. However, for many applications the amount
of data actually produced or consumed varies greatly over time.As a means to
improve performance when dealing with kernels dealing with varying size data,
we propose a simple yet powerful OpenCL extension named cl pocl content size.
The extension provides an optional way to signal the actual used portion of
an OpenCL buffer to the runtime as well as the consuming kernels. It works by
designating a separate buffer, just large enough to hold a single unsigned integer,
that holds the number of bytes actually being used by the buffer for valid data.
PoCL-R runtime reads the content size buffer as an hint to only transfer the
meaningful portion of buffers when migrating them between remote servers.

An example of using the extension is shown in the code snippet of Fig. 3.
The only addition to the standard OpenCL API calls is the call which associates
a content size buffer with a data buffer (clSetContentSizeBufferPOCL), and
the addition of this “size buffer” to the kernels’ arguments.

4 Latency and Scalability Results

The following subsections describe the experiments performed to measure the
latency and scalability of the PoCL-R runtime and the results obtained. In order
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cl_mem data_buffer;
cl_mem data_size;
cl_event ev;
...
/* Attach data_size to data_buffer to hold
* the content size. */

clSetContentSizeBufferPOCL(data_buffer , data_size);

/* Kernel writes an unknown amount of data to
* data_buffer , and its size to the data_size
* argument. */

clSetKernelArg(kernel1 , 0, sizeof(cl_mem), &data_buffer);
clSetKernelArg(kernel1 , 1, sizeof(cl_mem), &data_size);
clEnqueueNDRangeKernel(command_queue , kernel1 , 1,

NULL , NULL , NULL ,
0, NULL , &ev);

/* The second kernel uses information from data_size
* to restrict its processing to the meaningful part
* of data_buffer. */

clSetKernelArg(kernel2 , 0, sizeof(cl_mem), &data_buffer);
clSetKernelArg(kernel2 , 1, sizeof(cl_mem), &data_size);
clEnqueueNDRangeKernel(command_queue , kernel2 , 1,

NULL , NULL , NULL ,
1, &ev , NULL);

...
clFinish ();

Fig. 3: Example of using the proposed dynamic buffer extension in a sequence
of two kernels. The user defines a designated buffer where the kernel stores the
size, which can be then used by the runtime to optimize the buffer transfers and
migrations, as well as by the consumer kernels of the buffer to read the input
size.

to more accurately measure the performance overhead of PoCL-R, wired network
connections were preferred. In real-world use, client connections would generally
be wireless and introduce network-dependent latency and jitter.

4.1 Command Overhead

Since low latency is a key priority of PoCL-R, we constructed a synthetic bench-
mark to measure the overheads imposed by the runtime itself using a kernel that
simply exists. Some runtimes don’t handle this well but it is a good indicator for
command handling overhead. We compare the numbers against the roundtrip
time reported by the ping utility which is generally accepted as a good baseline
for network latency.

This benchmark creates a no-op kernel, enqueues it and waits for it to com-
plete using clFinish. This is repeated 1000 times and the results are averaged.
The client is a desktop PC with a 100-Mbps wired connection to the server. Time
stamps are taken in the application code before the clEnqueueNDRangeKernel

and after a clFinish call to ensure the completion of the command has been
registered by the client application. The duration between the two is used for
the host-measured timings.
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Two machines with a Ryzen Threadripper 2990wx CPU and two Geforce
2080 Ti GPUs each were used for testing. The machines were connected to a
100Mbit LAN.

The results of this test are shown in Fig. 4a. For reference, the ICMP round-
trip latency as reported by the ping utility fluctuates around 0.122 ms. On
localhost the ICMP round-trip latency was measured to average at 0.020 ms.
The average command duration was observed to be consistently around 60 mi-
croseconds more than ping. We consider this to be a good result given that
connections between consumer devices and application servers usually measure
in tens to hundreds of milliseconds even in realtime applications and even on our
100-Mbps LAN with a ping delay two to three orders of magnitude less than the
aforementioned case, the overhead on top of ping is only a fraction of the full
command duration. Running the application and server on the same machine
confirms that the overhead is constant.

The closest related work that we could successfully make run and benchmark
against was the latest version (1.3.3) of SnuCL [18] (released in 2015). SnuCL has
a similar idea to PoCL-R but seems to focus more on datacenter-side throughput
scalability. In order to compare PoCL-R imposed minimum runtime latencies to
SnuCL, a simple passthrough kernel that simply copies its single integer input to
an output buffer was implemented. Kernel runtimes as reported by the OpenCL
event profiling API were measured for three setups of interest: The proprietary
NVIDIA driver used without any distribution layer, the SnuCL Cluster imple-
mentation and PoCL-R. The runtime differences here are indicative of internal
command management overhead of the respective frameworks on top of the na-
tive driver and the additional overhead imposed by the MPI runtime in case
of SnuCL. The results of this benchmark as shown in Fig. 4b put PoCL-R no-
ticeably ahead of SnuCL with the average command duration in PoCL-R being
only around 1

6 of SnuCL’s. In comparison to running without a distribution layer,
PoCL-R takes almost twice as long, indicating some room for improvement.

4.2 Data Migration Overhead

The authors of SnuCL report data movement being the bottleneck in some of
their benchmarks [18]. In order to get a general idea of how much the runtime
affects the communication overhead due to data movement, it is interesting to
measure the minimum time a buffer migration between devices takes due to
runtime overhead. This is done separately from the no-op command overhead
measurements because PoCL-R remote servers communicate directly with each
other in a P2P fashion: the host application only has to send a migration com-
mand to the source server which in turn forwards the command to the destination
server.

The test triggers 1000 migrations between remotes and averages the durations
at the end. A buffer of 4 bytes is used to minimize the effect of transfering the
actual contents and better measure runtime overhead. All kernel invocations
were enqueued in sequence and after waiting for completion of all commands
the buffer migrations inserted by the PoCL-R runtime were extracted and their
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Fig. 4: Comparison of runtime duration of a no-op command in various network
conditions.

timing information was analyzed. The results are shown in Fig. 5. When using
a 100-Mbps ethernet connection between the remote servers the average timings
add up to around 3x the overhead of a no-op command on top of network ping,
which seems reasonable for a 3-step roundtrip (from the host to the first server,
to the second server and back to the host) with extra buffer management on the
intermediate hops.

Using an 40-Gbps direct infiniband link shortens the total duration in com-
parison to the ping noticeably, mostly because this is a dedicated direct con-
nection between the two machines with no switches or other network equipment
on the way and no interference from other traffic from the operating system.
The benchmark was also run with two PoCL-R daemons running on the same
machine as well as one daemon migrating data between two GPUs installed on
one machine. However, the native OpenCL implementation used by the dae-
mon turned out to exhibit a notable performance regression when using two
GPUs simultaneously instead of just one, making this configuration impossible
to compare. A comparison with SnuCL was attempted, but calling clEnqueueM-
igrateMemObjects consistently resulted in a segmentation fault.

Two machines with an AMD Ryzen Threadripper 2990wx CPU and two
NVIDIA Geforce 2080 Ti GPUs each were used for testing. The machines were
connected to a 100Mbit LAN and had an additional direct 40Gbit infiniband
link between them.

4.3 Distributed Large Matrix Multiplication

For a non-trivial throughput scalability benchmark, we constructed a distributed
matrix multiplication application. This benchmark multiplies two NxN matrices
using as many devices as the OpenCL context has available. Every device gets
the full data of both input matrices and calculates a roughly equal number of
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Fig. 5: Duration of a migration of a 4-byte buffer between two devices using
different connectivity between servers, as well as using the native NVIDIA driver
for reference. Numbers are averaged across 1000 migrations. The dashed line
represents the average ICMP ping for the given connection.

rows of the output matrix. Five independent multiplications are run in parallel
in order to keep all GPUs saturated and demonstrate total throughput. While
the actual calculations are an embarrassingly parallel task, the partial results
from each device have to be collected into a single buffer for the final result,
which makes the workload as a whole non-trivial to scale.

This is largely similar to the matrix multiplication used in the benchmarks
of SnuCL [18] with the exception that here the parts of the output matrix are
combined to a single buffer on one of the GPUs and this is included in the
host timings. The NVIDIA example that is mentioned as the source for the
benchmark in [18] only measures the duration of the actual compute kernel in-
vocations, which corresponds to the device-measured timings in our benchmark.
It is unknown if the time to combine the partial results was accounted for in the
SnuCL benchmark, but given that they report scalability problems it likely was
part of the measurements.

Benchmarking was done on a cluster with three servers with an Intel™ Xeon™
E5-2640 v4 CPU and four NVIDIA Tesla P100 GPUs. An additional server
with an Intel™ Xeon™ Silver 4214 CPU and four NVIDIA Tesla V100 GPUs
was used to fill the number of usable compute devices to a total of 16 GPUs.
All cluster servers were connected to each other and to the machine running the
host application with a 56-Gbps infiniband link.

The relative speedup when multiplying two 8192 by 8192 matrices with an
increasing number of GPUs is shown in Fig 6. We observe logarithmic speedups
compared to using a single GPU up to slightly below 6x with 16 GPUs. This is
roughly in line with the results reported in [18] with the version of SnuCL that
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Fig. 6: Relative speedup when multiplying two 8192x8192 matrices using 1 to 16
remote devices spread across 4 servers.

uses their proposed MPI collective communication extensions. Our implementa-
tion also doesn’t exhibit the performance regression suffered by the unextended
P2P version of SnuCL when using more than 8 devices.

5 Real-time Point Cloud Augmented Reality Rendering
Case Study

In this section, we describe a full application task offloading case study, a smart-
phone application [21] that renders a streamed animated point cloud in aug-
mented reality (AR). Fig. 7 shows the application in action. The point cloud is
received as an HEVC-encoded [22, 28] VPCC (Video-based Point Cloud Com-
pression) stream [8] which is decompressed using the mobile device’s hardware
decoder and reconstructed using OpenGL [30] shaders [26]. A more in-depth
explanation of this process is given in [24].

Visual quality can be greatly improved by using alpha blending to hide point
boundaries, but this requires sorting the points by distance to the viewer, which is
a costly operation and a prime candidate for remote offloading. When offloading
is enabled, the VPCC stream is sent to both the device and directly to the
remote compute server and decoding and point reconstruction are performed on
both. However the point sorting is only done on the remote and the sorted point
indices are sent back to the mobile device for rendering.

The remote daemon makes use of the OpenCL 1.2 custom device type feature
to provide a virtual device that exposes the server’s video decoding capabilities
using VDPAU and OpenGL; the decoder appears to the application as a fully
conformant OpenCL device of type CL DEVICE TYPE CUSTOM and thus does not
require the use of any API extensions. The decoded result is made available as an
OpenCL buffer with the OpenGL-OpenCL interoperation feature.The proposed
dynamic buffer size extension can optionally be used to speed up transfers of the
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Fig. 7: Screenshot of the AR application used to measure the effect of offloading
heavy computation. A streamed animated point cloud of a person holding a small
tablet device is displayed in augmented reality on top of a real-world chair.

buffers between the OpenCL devices as their sizes vary wildly between frames –
especially the compressed VPCC stream which on average has a much smaller
chunk size than its worst case.

Framerates measured from the application are shown in Fig. 8a. The first two
measurements are obtained using the local (mobile) GPU only for reconstruction
sorting and AR positioning. The next two measurements offload point sorting
to a GPU on a PoCL-R remote server with P2P buffer transfers disabled and
enabled, for a roughly 2.3x speedup over the full reconstruction, sorting and
AR workload done on the mobile GPU. Finally, the figure shows an almost 19x
speedup when using the dynamic buffer size extension.

Fig. 8b shows energy consumption per frame (EPF) measured on the mobile
device in the same offloading configurations.The power usage of the smartphone
was retrieved using Android’s Power Stats HAL interface. Offloading the sorting
of the point cloud compensates for most of the added energy consumption from
AR positioning even without further optimizations.Enabling P2P buffer transfers
and the content size extension further cuts energy consumption per frame to a
mere fifth of the non-AR case. Overall the results point to PoCL-R being a
powerful enabler for rendering advanced content on handheld devices.

Testing was done on a PC with an Intel Core i7-6700 CPU and a NVIDIA
GeForce 1060 3GB GPU that was connected to an ASUS ROG Rapture GT-
AX11000 WiFi6 router via gigabit ethernet. The mobile device used was a Sam-
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Fig. 8: Performance of the AR demo application in various offloading configura-
tions. lGPU and rGPU refer to the mobile device’s local GPU and the remote
GPU exposed via PoCL-R. AR indicates live position tracking. P2P refers to
transferring buffer data from the (remote) data source directly to the remote
GPU and DYN indicates that the buffer content size extension is used.

sung Galaxy S10 SM-G973U1 with a Qualcomm® Snapdragon™ 855 chipset.
The streaming data source emulated a camera feed by looping a prerecorded
stream from a file.

6 Related Work

Multiple projects [14, 20, 23, 31] have expanded the scope of originally single
server targeting heterogeneous APIs for distributed use in the past, but most
of them have long since faded into obscurity and their implementations are
no longer available for use and comparison, let alone for further development.
Various projects [1–4, 14] also solely target HPC clusters with their existing
library ecosystem and optimize purely for throughput.By contrast, our proposed
runtime targets to support both compute clusters and realtime applications, and
most interestingly, their combination.

Among the previous projects we found, the closest to PoCL-R is SnuCL [18].
It provides an implementation of the standard OpenCL API that enables exe-
cution of OpenCL commands on remote servers. However, it focuses solely on
throughput in HPC cluster use cases with no consideration of latency. For com-
munication it relies on the MPI framework. SnuCL supports peer-to-peer data
transfers, but they report scaling problems in some tasks such as the matrix
multiplication we used in our benchmarking. SnuCL solves these scaling issues
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with a proposed OpenCL extension that maps MPI collective operations to a set
of new OpenCL commands. In contrast, PoCL-R uses plain TCP sockets with
a custom protocol and socket settings tuned for low latency.SnuCL also handles
command scheduling on the host machine, whereas PoCL-R lets remotes do their
scheduling autonomously.

Further work on SnuCL also exists in the form of SNUCL-D [17], which fur-
ther decentralizes computation by duplicating the control flow of the entire host
program on each remote server. This results in great scalability improvements
in theory, but requires the host application to be fully replicable on all servers
which is naturally not possible by default.

Another very close project in terms of the overall idea is rCUDA [5]. At
the time of this writing, rCUDA is one of the most actively developed related
projects, but being based on the proprietary CUDA API it is limited in hardware
support and portability.

There is also a recent open source project by the name RemoteCL [6] that
takes the same approach with plain network sockets as PoCL-R. However, it
only aims to fit the needs of the author and makes no attempt at providing a
full conformant implementation of the OpenCL API. It also does not appear to
support more than one remote server.

In a wider point of view, when used for accelerating graphics rendering of
interactive content, PoCL-R could be thought of as an alternative to already
commercialized game streaming services such as Google Stadia. The key differ-
ence is that when using PoCL-R for rendering acceleration, the use cases can be
more flexible and adaptable to the available resources: A lightweight client de-
vice can render content using slower local resources and opportunistically exploit
edge servers to improve quality instead of rendering exclusively on the server.

7 Conclusions and Future Work

In this paper we proposed a scalable low-latency distributed heterogeneous com-
puting runtime PoCL-R which is based on the standard OpenCL API’s features.
We also proposed an API extension that significantly improves buffer transfer
times for cases with varying data sizes. The unique latency and scalability en-
hancing features were tested with a distributed real-time augmented reality case
study which reached 19x improvement in FPS and 17x in EPF by remote of-
floading a rendering quality enhancement kernel using the runtime. The remote
kernel execution latency overhead was measured to be at 60 microseconds while
the scalability at multi-server multi-GPU cluster level was shown with a logarith-
mic scaling of a distributed large matrix multiplication. These results indicate
the significance of the proposed runtime as an enabler for high-performance low
power distribution of computation and application deployment without needing
additional distribution API layers.

In the future, we will research various low hanging fruits for improving the
performance of the runtime further, e.g., by transparent and intelligent use of
RDMA [25], GPUDirect [19] and similar technologies for improving cross-server
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and cross-GPU data transfer latencies. We will also investigate improvements
to dynamic multi-user scheduling and load balancing such as the approaches
described in [27] and [11]. Wireless networks can be unreliable for various reasons,
so we will add handling for network instability.
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