DRAMSys4.0: A Fast and Cycle-Accurate
SystemC/TLM-Based DRAM Simulator

Lukas Steiner', Matthias Jung?, Felipe S. Prado®,
Kirill Bykov!, and Norbert Wehn!

! Technische Universitit Kaiserslautern, Kaiserslautern, Germany
{lsteiner, wehn}@eit.uni-kl.de
2 Fraunhofer IESE, Kaiserslautern, Germany
matthias. jung@iese.fraunhofer.de

Abstract. The simulation of DRAMSs (Dynamic Random Access Mem-
ories) on system level requires highly accurate models due to their com-
plex timing and power behavior. However, conventional cycle-accurate
DRAM models often become the bottleneck for the overall simulation
speed. A promising alternative are DRAM simulation models based on
Transaction Level Modeling, which can be fast and accurate at the same
time. In this paper we present DRAMSys4.0, which is, to the best of our
knowledge, the fastest cycle-accurate open-source DRAM simulator and
has a large range of functionalities. DRAMSys4.0 includes a novel simula-
tor architecture that enables a fast adaptation to new DRAM standards
using a Domain Specific Language. We present optimization techniques
to achieve a high simulation speed while maintaining full temporal accu-
racy. Finally, we provide a detailed survey and comparison of the most
prominent cycle-accurate open-source DRAM simulators with regard to
their supported features, analysis capabilities and simulation speed.

Keywords: DRAM, Simulation, SystemC, TLM

1 Introduction

Since today’s applications become more and more data-centric, the role of Dy-
namic Random Access Memory (DRAM) in compute platforms grows in im-
portance due to its large impact on the whole system performance and power
consumption. Over the last two decades, the number of DRAM standards speci-
fied by the JEDEC Solid State Technology Association has been growing rapidly.
Because of the large variety of standards, system designers have to face the dif-
ficult task of choosing devices that match system requirements for performance,
size, power consumption and costs best. A short time to market aggravates this
choice and creates the need for DRAM simulation models that allow both fast
and truthful design space exploration.

DRAM subsystems are composed of a DRAM controller and one or several
DRAM devices. Although the DRAM standards define a framework of rules
for the sequence and minimum time distance between DRAM commands, the
controller still has some freedom on their placement and the scheduling of incom-
ing requests. Different controller implementations exploit this freedom in order

2 Lukas Steiner et al.

DRAM
Models
Cycle- Non-Cycle-
Accurate Accurate
Models Models
Discrete Custom Pure Cycle-
Event Simulation Functional Approximate
Simulations Kernels Models Models

Statistical
Models
e.g. 9,10]

RTL Models
eg 1]

Fixed-
Latency
Models
explained in [8],
e.g. Loosely-
Timed TLM
(TLM-LT)

Loop-Based
Models
DRAMSim2 [4],
DRAMsim3 [5],
Ramulator [6],
DrSim (7]

Cycle-
Accurate
TLM Models
DRAMSys3.0 [2],
DRAMSys4.0,
gemb5 [3]

Neural
Networks
g [11]

Analytical
Models
g [12]

Fig. 1. Different DRAM Simulation Models

to optimize for different metrics (e.g., latency, bandwidth, power). Therefore, a
DRAM subsystem simulation represents (1) one specific DRAM controller imple-
mentation and (2) one specific DRAM standard. It can be performed on different
levels of abstraction, each offering a certain trade-off between speed and accu-
racy. Figure 1 provides an overview of different models for DRAM subsystem
simulations.

Non-cycle-accurate DRAM simulation models (right side) allow high simu-
lation speeds but lack in accuracy. The simplest, pure functional model for a
DRAM subsystem is a fixed-latency model [8]. Within this approach all request
experience the same constant amount of latency and all subsystem internals
are omitted. However in reality, the latencies of DRAM accesses vary between
a dozen and several hundred cycles due to the complex device architecture.
Therefore, a pure functional model is not useful for design space exploration and
performance estimations. Cycle-approximate models try to mimic the latency
behavior of real DRAM subsystems by utilizing e.g. statistical methods [9, 10] or
neural networks [11]. Unfortunately, their accuracy can change from simulation
to simulation, which makes them unsuitable for reliable performance estimations
and design space exploration, too.

Cycle-accurate DRAM simulation models (left side) provide full temporal
accuracy for truthful investigations, but usually take a lot more time to execute.
RTL models of real DRAM controllers [1] can be simulated with the help of a
Discrete Event Simulation (DES) kernel to represent a clock signal, trigger the
execution of processes and model the hardware’s concurrency. Most state-of-the-
art cycle-accurate DRAM simulators, namely DRAMSim2 [4], DRAMsim3 [5],
Ramulator [6] and DrSim [7], avoid the overhead of a DES kernel and use a
simple loop to represent clock cycles. In addition, they do not model individual
signals, which reduces the complexity and allows faster modifications. However,
the processes of all these simulators as well as the RTL models are evaluated
in each clock cycle, whether or not there are any state changes in the system.
Consequently, the consumed wall clock time for a simulation grows linearly with
the simulated time and is more or less independent of the memory access density

DRAMSys4.0 3

(see Section 3). Thus, when coupled with modern CPU simulators, the cycle-
accurate DRAM simulation even starts to become the bottleneck of the overall
simulation speed for realistic workloads [13].

To reach higher simulation speeds while still providing full temporal accuracy,
the design space exploration framework DRAMSys3.0 [2] uses the concept of
Transaction Level Modeling (TLM) based on the SystemC/TLM2.0 IEEE 1666
Standard [14]. This approach also relies on a DES kernel, however, new events
are not generated by a clock signal but only by the processes themselves. In
this way the processes are only evaluated in clock cycles where state changes
occur (see Section 2.1). As a result the simulation speed is heavily dependent
on the memory access density and can be significantly higher than the speed of
the abovementioned simulators. Up until now DRAMSys3.0 is not open sourced
and does not support the latest DRAM standards. gem5 [3], an open-source full-
system simulator, uses a similar TLM concept to speed up simulations. Major
drawback of its provided cycle-accurate DRAM model [15] is a close link to the
DDR3/4 standards, which leads to a reduced accuracy for simulations with other
DRAM standards as shown in [13].

To the best of our knowledge, there exists no cycle-accurate open-source
DRAM simulator that fully supports the latest DRAM standards, performs sim-
ulations in a speed that enables fast design space exploration, allows a direct
coupling to other system components based on the state-of-the-art system-level
modeling language SystemC or to the full-system simulator gemb, and offers
enough capabilities for a holistic performance analysis.

In this paper we present DRAMSys4.0, a completely revised version of DRAM-
Sys3.0 [2]. It supports the latest JEDEC DRAM standards (e.g., DDR4, LPDDRA4,
GDDR6 and HBM2), is optimized to achieve between 10x to 20x higher simu-
lation speeds compared to its predecessor, and offers a large toolbox for analysis
and validation. The framework will be open sourced on GitHub.3
In summary, this paper makes the following contributions:

— We present DRAMSys4.0, which is, to the best of our knowledge, the fastest
open-source DRAM simulator with cycle accuracy. We present a novel sim-
ulator architecture that enables a fast adaptation to new DRAM standards
and different DRAM controller implementations.

— We present a sophisticated approach to automatically generate the source
code of this simulator for new standards from formal descriptions based on
a Petri Net model. The same approach is used to validate the functional
behavior of state-of-the-art simulators.

— We demonstrate how RTL descriptions of real DRAM controllers can be
validated with DRAMSys4.0 by embedding them into the framework and
by exploiting our analysis tools. To speed up the RTL simulation of the
DRAM controller, we suppress unnecessary events by disabling the clock
signal during idle phases.

— We provide a detailed survey and a fair comparison of the most prominent
cycle-accurate open-source DRAM simulators with regard to their supported
features and analysis capabilities (see Table 2). We also compare their sim-
ulation speed.

3 https://github.com/tukl-msd/DRAMSys

4 Lukas Steiner et al.

The remaining paper is structured as follows: In Section 2 DRAMSys4.0 is
presented, including all its functionalities for fast adaptation, result analysis
and validation. Section 3 discusses related cycle-accurate simulators, provides
a detailed comparison among them, and presents cycle-approximate approaches
for a fast and accurate DRAM simulation. Section 4 concludes the work.

2 DRAMSys4.0

In this chapter we present DRAMSys4.0, which supports the latest JEDEC
DRAM standards and is optimized to achieve much higher simulation speeds
than the predecessor. More precisely, we present its architecture and function-
ality, discuss our optimizations to increase the simulation speed, and give an
overview of the framework’s unique features. Among them are the Trace Analyzer
for visual and metric-based result analysis, the possibility for the co-simulation
with RTL controllers, and the Petri-Net-based code generation and validation.

2.1 Functionality and Architecture

As mentioned in the introduction, DRAMSys* uses the concept of TLM based
on the SystemC/TLM2.0 IEEE 1666 Standard [14] for a fast and fully cycle-
accurate simulation. In accordance with the standard, all components are de-
signed as SystemC modules (sc_.module) and connected by TLM sockets. The
simulator utilizes the Approximately Timed (AT) coding style, which defines
a non-blocking four-phase handshake protocol.> A four-phase handshake is re-
quired to model the DRAM subsystem’s pipelined behavior and out-of-order
responses to the initiators. However, since a single memory access can cause
the issuance of multiple DRAM commands depending on the device’s current
state (e.g., precharge (PRE) - activate (ACT) - read (RD)/write (WR) for a row
miss), four phases are still not sufficient to model the communication between
controller and device with full temporal accuracy. To close this gap, a custom
TLM protocol (called DRAM-AT) that defines application-specific phases for all
DRAM commands was introduced in [16]. These phases allow a projection of
the cycle-accurate DRAM protocol to TLM.

The rule of thumb for making cycle-accurate simulations fast is to reduce
the number of simulated clock cycles or events, respectively, and the control
flow overhead that is executed. Therefore, DRAMSys only simulates the clock
cycles in which state changes occur. Figure 2 shows an example for an ACT com-
mand and its timing dependency® trcp to a following RD command. While all
loop-based simulators would simulate ten clock cycles to issue both commands,
DRAMSys only simulates the first clock cycle, notifies an event after tgop, and
directly simulates the tenth clock cycle to issue the RD command. All clock cycles
in between are skipped and the simulation time is fast-forwarded. Especially in

4 DRAMSys without a version number refers both to DRAMSys3.0 and DRAMSys4.0.

5 The TLM-AT base protocol consists of the phases BEGIN_REQ, END_REQ, BEGIN_RESP
and END_RESP.

5 Timing dependencies are temporal constraints that must be satisfied between issued
DRAM commands.

DRAMSys4.0 5

CLK
CMD
ADD
[trcD e
oM — [)
Fig. 2. TLM Implementation of the ACT Command [16]
and s Mol g 40, 1 :
! ! Special DRAM-AT TLM Protocol
‘ " 1] DRAM Sys : pecia rotoco.

|

[

]

[

[

[

[

]

i
Model "
[

]

[

[

[

[

]

|

|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
\

. I
S Refresh !
: Managers 1
s I
ro = 1
< I
Prerecorded :
. I
Trace Files - '
I
I

Core, || Corey
I
(‘ o

Channels

Fig. 3. Architecture of DRAMSys4.0

scenarios where the memory access density is low, this approach can lead to an
enormous event reduction and a resulting simulation speedup of several orders
of magnitude (see Table 1 and Section 3) while still yielding fully cycle-accurate
results.

From an architectural point of view, DRAMSys4.0 consists like its predeces-
sor of an arbitration & mapping unit (short arbiter) as well as independent chan-
nel controllers and DRAM devices for each memory channel, shown in Figure 3.
The arbiter cross-couples multiple initiators and DRAM channels on the basis of
a predefined address mapping. It is followed by independent channel controllers
for each DRAM channel. Their task is to issue the requests to the DRAMs by
sending required commands according to the devices’ current states. The con-
nected DRAM devices then manage the storage of transferred data and enable
a coupling to power estimation tools (DRAMPower [17]), thermal models (3D-
ICE [18]) and retention time error models.

The architectural difference between DRAMSys4.0 and its predecessor is in
the simulator’s core component, the channel controller. DRAMSys4.0’s chan-
nel controller architecture is inspired by advanced hardware DRAM controllers
(e.g., [1]). As shown in Figure 4, it is composed of a scheduler, R - B bank
machines where R is the number of ranks the channel is composed of and B
the number of banks per rank, R refresh managers, R power down managers, a
command multiplexer, a response queue and a timing checker. Since SystemC
is based on the object-oriented C++ programming language, all components
can be designed polymorphically, which allows different policies to be selected
during runtime. This is used to specify different DRAM standards and channel

6 Lukas Steiner et al.

R*B Bank Command
l Scheduler Machines Multiplexer

R Refresh
Managers

from/to
Arbiter

R Power Down
Managers

Response
Queue

Fig. 4. Channel Controller Architecture

from/to
DRAM

Timing
Z_| Checker

controller implementations without requiring a recompilation of the tool or cre-
ating additional control flow that results in a slowdown (see also Section 2.2).
In addition, the predefined interfaces simplify and speed up the integration of
new features. An overview of all supported policies and DRAM standards will
be provided in Table 2 in Section 3.

The scheduler buffers incoming requests and reorders them with respect to
bandwidth or latency improvements based on a scheduling policy. After select-
ing one request, it is forwarded to a bank machine, which keeps track of the
associated bank’s current state and issues a sequence of commands to serve
this request. Similar to the scheduler, the bank machines support various page
policies [15] to improve the bandwidth or latency of different workloads by auto-
matically precharging the bank’s opened row in some cases. Since DRAMSys4.0
models the timing, power, thermal and error behavior of DRAM devices in full
detail, the channel controller also has to regularly issue refresh commands and
has to trigger power down operation during idle phases. These tasks are taken
over by the rank-wise refresh managers and power down managers. Both com-
ponents are designed polymorphically as well to represent different refresh and
power down policies. To find the earliest possible time for issuing a command
to the DRAM while satisfying all timing dependencies, bank machines, refresh
managers and power down managers invoke the timing checker. On the basis
of the whole command history and required information extracted from the
DRAM standards, the timing checker calculates this point in time. Since the
timing dependencies slightly differ from standard to standard, DRAMSys4.0
uses a separate checker for each of them. If more than one bank machine, re-
fresh manager or power down manager wants to issue a command in the same
clock cycle, a conflict arises because of the shared command bus. The command
multiplexer resolves this conflict by prioritizing one command (e.g., round robin
among ranks/banks). As last component, the channel controller includes a re-
sponse queue. It buffers the read responses for a transport back to the arbiter
and can also reorder them.

DRAMSys4.0 7

Table 1. Event Reduction and Total Speedup for MediaBench Benchmarks [19]

Benchmark Number of Total Clock Simulated Events Event Total
Requests Cycles v3.0 v4.0 Reduction Speedup
h263decode 9867 142185273 49904 36258 27.34 % 9.22
g72lencode 14655 152283166 65528 48900 25.38 % 8.98
g721decode 19350 171781365 91828 70171 23.58 % 9.73
gsmdecode 19734 42213726 93520 71158 23.91 % 9.07
c-ray-1.1 21627 132918262 119660 85124 28.86 % 10.12
fractal 33895 64184959 228184 156697 31.33 % 11.15
jpegdecode 43143 19675438 196408 148407 24.44 % 9.23
mpeg2decode 72043 97603461 374848 272235 27.37 % 10.01
unepic 129145 10557869 718716 536878 25.30 % 10.02
jpegencode 173995 39209690 769872 580929 24.54 % 9.35
epic 182957 55148722 940708 698595 25.74 % 9.80
mpeg2encode 616935 798646158 3457084 2522754 27.03 % 9.98
h263encode 858099 526757549 4312932 3148787 26.99 % 9.35

2.2 Optimizations for Simulation Speed

To further increase the simulation speed of DRAMSys while maintaining its cy-
cle accuracy, several optimizations have been performed during the revision. As
stated earlier, simulations can be sped up by reducing the number of simulated
clock cycles or events, respectively, and the executed control flow overhead. Al-
though the used TLM concept ensures a minimum of simulated clock cycles,
multiple events may still be fired in the same clock cycle that trigger separate
processes or the same process several times. This mechanism is usually needed
to model the hardware’s concurrency. While DRAMSys3.0’s channel controller
internally used three event-triggered processes, the new channel controller only
needs a single event-triggered process to represent all functionality. It manages
the communication and transfer of data between the internals. If, however, mul-
tiple events the process is sensitive to are still notified for the same clock cycle,
the SystemC simulation kernel performs only a single execution. That way the
numbers of simulated events and simulated clock cycles in DRAMSys4.0’s chan-
nel controller are identical.

Table 1 shows the event reduction in the channel controller for memory
traces of the MediaBench benchmarks [19] simulated with a DDR3 DRAM
(1 GB DDR3-1600, single channel, single rank, row-bank-column address map-
ping, FR-FCFS scheduler, open-page policy, run on an Intel Core i9 with 5 GHz).
The simulations were performed with a disabled refresh mechanism to see the
correlation between the number of requests and events. The table also shows the
large difference between the total number of clock cycles and simulated events.

By means of the polymorphic software architecture, DRAMSys4.0 is capable
of modeling different DRAM standards and channel controller implementations
without introducing any additional control flow that has to be executed fre-
quently during the simulation and, thus, slows it down. For illustration let us
assume that the channel controller should be capable of modeling both the open-
and closed-page policy.” Instead of checking the page policy each time a read or

" Controllers that implement the open-page policy keep the corresponding row open
after a read or write access, while controllers that implement the closed-page policy
automatically precharge the corresponding row after a read or write access.

8

18:_fcfs-MICRON_4Gb_DDR4-2400_8bit_A-am_highPara E3 | 18-fr_fcfs-MICRON_4Gb_DDR4-2400_8bit_A-am_highHits

Lukas Steiner et al.

18:fr_fcfs_bankwise-MICRON_$Gb_DDR4-2400_8bit_A-am_highPara

16:fr_fcfs_bankwise-MICRON_$Gb_DDR4-2400_8bit_A-am_highti ;>

- i
o
s = —
sank1a j—— R Growpby B) = R & s14
i Colom 5
s J——— = 000000 =
seect B = hidess onotosseo
k2 eatequery cle E-—00-—0-000—FEE—WO-MOEEEE————————————W00-00-00-0- M0 0@ o S
wen g eeareney cle E5—00—6-000—F=3 e Thiesd i
Bk =] ACT [249€07) 1967156405 196
= WR [249610] 19671577 ns 196
Banks il = RESP [249613] 19671594 s 196
sk 000 £3000-000———F= E2000-00 a—|
8) 7
e P MM =i e Detailed Info
ks] = = =
aanka) = =) = P! HNe— &=
- & = i 400-000)
sk) = 00-F=1000 e o=
sankz = =] by R &=
=N e
k1 = 3060 == = ‘&=
= =]
ko 3 R = o=
cmdsus f
Data Bus i f H— i —i—H A { i

Simulation Info
Timeinns

B0Een0a

nfig: fr_fefexeml

quocenoon

(ON_1Gb_DDR4-2400_8bit_Axml
ymber of Transactions: 125671

ck period: 833 PS

ngth of trace: 19675486 ns

L =
iy
i

19663000

H
§

Fig. 5. Program Interface of the Trace Analyzer [2]

write command is issued, DRAMSys4.0 instantiates bank machines that imple-
ment the selected policy once at the start of the simulation and implicitly issues
the right commands for the remaining simulation.

Time-consuming string manipulations for the creation of debug messages
or log files can be completely removed in the revised version if they are not
required. The gained simulation speedup with disabled refresh mechanism for
the MediaBench benchmarks is also shown in Table 1, more speedup results will
be presented in Figure 8 in Section 3.1.

2.3 Trace Analyzer

To provide better analysis capabilities for DRAM subsystem design space ex-
ploration than the usual performance-related outputs to the console or a text
file, DRAMSys4.0 provides the Trace Analyzer just like its predecessor. After
having recorded all TLM transactions of the channel controller in an output
trace SQLite database during a simulation, the data can be evaluated using the
Trace Analyzer. It illustrates a time window of requests, DRAM commands and
the utilization of all banks as shown in Figure 5, which can help system design-
ers to understand the subsystem’s internal behavior and to find limiting issues.
Exploiting the power of SQL, the data aggregation happens quickly and the
tool provides a user-friendly handling that offers a quick navigation through the
whole trace with millions of requests and associated DRAM commands. How-
ever, since an enabled output trace recording still requires a reasonable amount
of time and decreases the overall simulation speed, the most important metrics
are also provided on the command line.

DRAMSys4.0 9

An evaluation of the traces can be performed with the powerful Python in-
terface of the Trace Analyzer. Different metrics are described as SQL statements
and formulas in Python and can be customized or extended without recompil-
ing the tool. Typical metrics are for instance memory utilization (bandwidth),
average response latency or the percentage of time spent in power down.

2.4 Co-Simulation with RTL Controller

In addition to the simulation of DRAM subsystems based on the previously
introduced high-level channel controller (see Section 2.1), DRAMSys4.0 offers
the possibility of embedding cycle-accurate RTL channel controller models into
the framework. This allows the validation and analysis of the RTL with the
tools provided by DRAMSys4.0 without any manual translation to a higher
abstraction level. For example, the Verilog design of a memory controller can be
auto-translated into an equivalent SystemC RTL model by the Verilator® tool.

To convert the TLM transports into associated RTL signals (including a clock
signal, which is not present in DRAMSys) and vice versa, a special transactor
module has to be wrapped around the RTL design as shown in Figure 6. Such a
transactor was developed for the DDR3 channel controller presented in [1] and
exhaustively tested with DRAMSys4.0.

An RTL simulation can also be accelerated by suppressing unnecessary events,
see, e.g., [20]. Similar to the idea of clock gating in real circuits for power saving,
turning off the clock signal during idle phases of an RTL simulation saves a lot
of simulation events since clock signals have high event generation rates. Thus,
the so-called clock suppression can tremendously speed up a simulation with-
out changing its results. We adopted this technique for the RTL co-simulation.
However, since the internal refresh counter of the RTL channel controller is not
incremented by the suspended clock, the transactor saves the refresh counter
state externally before suspending the clock and notifies an event at the time
the next refresh command should be executed. When this event is fired or a new
request arrives, the internal refresh counter is updated to the proper value and
the clock is resumed.

Figure 7 shows the speedups of DRAMSys4.0 and the clock-suppressed RTL
for artificial traces with random access patterns and varying access densities (ac-
cesses per clock cycle) normalized to the plain RTL model (1 GB DDR3-1600,
single channel, single rank, row-bank-column address mapping, FCFS scheduler,
open-page policy, run on an Intel Core i9 with 5 GHz). For high densities the
clock suppression mechanism does not bring an advantage because the controller
never turns idle. Instead, it creates a very small computational overhead. With
decreasing densities the idle time increases and the speedup rises until it sat-
urates to a factor of 40 because of the refresh commands that also have to be
issued regularly during idle phases (self refresh operation is not supported by
the RTL controller). The TLM model achieves an even higher speedup across
the entire range, which is of factor 3 for high densities and rises to a factor of
4000 for low densities (self refresh operation of the TLM model was disabled for
a fair comparison). This is mainly a result of the higher abstraction level that
does not model individual signals and thus saves lots of events.

8 https://www.veripool.org/projects/verilator/

10 Lukas Steiner et al.
TLM-AT Core Ve TTTTTTTTT S ~
and Bus Models =" DRAMS 40 1 Spccial DRAM-AT TLM Protocol
EEE Ys . P

Core, || Corey
:
(‘ o

RTL DRAM
P
Channel —{ |

Controller =
cons [come | —

Transactor

=

=} o0

= =
=3

2% &

T =

<«

Prerecorded
Trace Files

Channels /
-

N o = == == == = =] - - - - -

Fig. 6. Architecture of DRAMSys4.0 with Embedded RTL Channel Controller

10%

—_
o
w

Speedup (log)
=3

[
o
—

—
(es]
=}

—_
7
(=]

T T TTTT7 T T TTTT7 T T T 1117 T T T T 11117 T T T T 11117 T T T 11T
TLM Channel Controller
Clock-Suppressed RTL Channel Controller

Ll

——— RTL Channel Controller

Lol Lol Lol Lol Lol Lo

107° 10" 107? 1072 107! 10°
Memory Access Density (log)

Fig. 7. Simulation Speedups Normalized to RTL Channel Controller

2.5 Code Generation and Validation

As stated in the introduction, an increasing number of different DRAM standards
have been presented by the JEDEC in recent years. Since each new standard
comes with slight changes in the DRAM protocol compared to previous ones,
the memory simulation models as well as the RTL models must be modified
and validated repeatedly. In order to keep pace with these frequent changes and
the large variety of standards, a robust and error-free methodology for a fast
adaption must be established.

In [21] we presented a comprehensive and formal Domain Specific Language
(DSL) based on Petri Nets [22] to describe the entire memory functionality of a
DRAM standard including all timing dependencies in just a few lines of code.

DRAMSys4.0 11

Using the formal description of a corresponding Petri Net, different simulation
and validation models are generated in this work:

— TLM Model Generation: The source code of the channel controller’s
standard-specific timing checkers (see Section 2.1) can be generated auto-
matically and correct by construction from these DSL descriptions, replac-
ing the error-prone handwritten SystemC implementation of a new memory
standard by the fast generation of SystemC code from a high-level descrip-
tion.

— RTL Controller Validation Model: As shown in Section 2.4 and Sec-
tion 2.3, DRAMSys4.0 offers functionalities for embedding an RTL model
of a memory controller into the framework and for recording the executed
DRAM commands in an output trace database. Using the formal DSL de-
scriptions, a standard-specific executable C++ validation model can be cre-
ated, which analyses a recorded DRAM command trace for standard compli-
ance. This approach provides fast feedback to an RTL developer if a change
in the RTL description led to a protocol violation.

— DRAM Simulator Validation Model: The same validation model is used
to analyze recorded command traces of other state-of-the-art DRAM simu-
lators. In Section 3.1 we reveal errors in DRAMsim3, Ramulator and in the
gemb DRAM model using our validation model.

3 Related Work and Results

This section provides a comparison between the most prominent open-source
cycle-accurate DRAM simulators and introduces approaches for the cycle-approx-
imate modeling of DRAM subsystems.

3.1 Cycle-Accurate Simulators

As stated in the introduction, there are several publicly-available cycle-accurate
DRAM simulators. Table 2 provides a comprehensive comparison that also in-
cludes both DRAMSys3.0 and DRAMSys4.0. For simplicity, we only focus on
DRAM standards and features specified by the JEDEC since they are best qual-
ified for real system developments.

DRAMSys3.0, DRAMSim2 and DrSim were already developed several years
ago but never updated over time, leading to an exclusive support of older
standards and making them unsuitable for most current system developments.
DRAMSys4.0, DRAMsim3, Ramulator and the gem5 DRAM model are all up-
dated from time to time, however, only DRAMSys4.0 and DRAMsim3 currently
support the latest standards like GDDR6 or HBM2. For request initiation all
simulators provide trace players and a coupling to gem5. In addition, DRAM-
sim3 supports a coupling to the simulation frameworks SST [27] and ZSim [28].
DRAMSys3.0 and DRAMSys4.0 can be coupled to any TLM-AT-compliant core
model. While all simulators seem to be cycle accurate at first view, some of them
do not model the full set of timing dependencies for all standards they support.
Using our Petri-Net-based validation model of Section 2.5, we were able to find
missing timing dependencies in DRAMsim3, Ramulator and in the gem5 DRAM

Lukas Steiner et al.

12

Table 2. Overview of the Most Prominent Open-Source DRAM Simulators

(Ir1] 0'zINTL/Dwe)

(Ir1] 0'zINTL/Dwes

([g] guos) -s£5 9991 AHHT) -s£S 9991 HHAHT)
poseq-INT.L poseq-doo| poeseq-dooy poseq-doo| poeseq-dooy poseq-INT.L poseq-IN"T.L [ePOIN uoIjR[NWIS
sorouspuadoap sorouapuadap
sopuspusadop Surwiy puBwWwod puewuwos sarouspuadep sarouspuada
¥/eyda Afuo e -o[oAo-13[Nw ou -o[0Ad-13[nw ou e JueI-1ogur ou e Surw], patopisuo)
- - - soujew jo gord [¥] stAINVHA 1ozAeuy odel], 1ezAleuy edva], uorjeZI[ENSI A J[NSoYy

o[y gndjno ur sorrjowx

©[0SUOD UT SDLIjOUW

20®I) puUBWWOD ‘Ollf
gndjno ur sorijewr

a1y gndjno ur sorIjew

yoode 1ed zemod 23
Aouage] ‘Yyprmpueq

90®1) puBWWOD
91T OS 10J sdTIjowW

‘uorydunsuoo remod

29 yspimpueq aSeiose

90®1) puUBWWOD
9917 S 10J SdOLIjeW
‘uorydwnsuoo remod

7% yjprmpueq oSeiose

soragey /sindinQ

CWISINVYHA
03 uostreduroo

TWISINVYHA
09 uostredwod

[opowr So[lIoA
UOIDIJN OjUl paj aowIl)
purwwos ¢yAd

[epowt SO[I19 UOIDTIIA
ojur paj seoery
puewwod §/eyad

[opowr SO[IIOA UOIDIN
ojur paj seowly
puewwods ¢/zyad

UOIJRZI[BNSIA J[NSOL
‘qdrros Surgsag

UOTJRZI[BNSIA }[NSAI

‘[1g] Suroeyd jnsax

29 uorjeisual apod
poeseq-joN-t13ed

POUIOIN UOIIRPI[RA

(T O/1 °pP1m Auo)
[epow wojsno

(1 O/1 oP1ms Auo)
[epowr wojsnod

SurepoN 10115

(spaepuess [[e)
[opow woysns

(T o/1oPtm
Auo) [81] @pI-AE

(T O/1 °PIM\
Auo) [81] @OI-AE

SuilepoIN [RWILY T,

[21] TomogINVHQ

[6g] surdwep 2z
[L1] emOogVHa

[L1] TomogNvVHa 7
lopow 1omod UOIDIN

lopow 1omod WOIDIN

[21] TemogINvVHQa

[L1] emognVyuQa

UOTJRWIISH I0MOJ

s[opouwr 2100 GguIal
‘(sooeay Arzouwrow

o1yse[o 79 poxy)
s1oherd oowig

sfopowt 9100 gual
¢(sooexy Azowow
poxiy) 1oferd eowly

s[opouwr 2100 gual
‘(seoe13 NdD
powir} 29 sedowvI}

Arowow powrjun

‘poxiy) 1oherd oowly

[ge] wisz ‘[22] LSS
‘sfopowt 2100 g8
“(sooery Krowow
poxy) zokerd oowrs

s[opowt 2100 guiad
¢(soow1y Arowrow
poxyy) aoferd oowiy

s[opouwt 2100 guas
‘s[opowt 9100 poseq
-puwaysAg ‘(seoway
Aiowowr O13selO 2%
poxty) stokerd ooeiy

S[opow 0100 o8
‘sfopour 9100 poseq
-Duweyskg ‘(seoeiy
Arowrowr O13sR[O 7§
poxiy) siokerd ooels

s103eIlTU] 9sonboyy

(o1y woysLd)
sjuorino 79 sSurwy
‘woryeziuesio WVHA
‘Surddew ssoippe
‘sororod I9[[013U0D

sSuruy 73
uoryeziuesio NVHA
‘Suraws[Iogul SSOIPPR
‘sororjod 19][013U0D

ozts 23 urq poods

‘prepuess NWVHA
‘Burddew sseippe

sjuerIno 279 sSurTI}
‘uoryeziuesIo
‘prepuess WVHA
‘Burddewr sseippe
‘sororjod ID2[0I3U0D

syuoaano 23 sBurwiry

‘uorjeziueSio VM
‘Surddew ssoippe
‘sororjod 19[[013U0D

(o113 TINX)
sjuorInd 2y sSuTIY
‘uoryezIuRSIO
‘prepuess WVHA
‘Surddew ssoIppe
‘sororjod I9[[0I3UOD

(13 NOSI)
sjuelIno 2zp sSUTWI}
‘uorjeziuesio
‘prepuess WVHd
‘Surddew ssoippe
‘sororjod 19[[013U0D

woryenSyuoy

To1] oarsdepe
peso[o ‘paso[d
‘oarydepe usdo ‘uodo

posoro ‘uodo

Jnoowiy ‘esreyoaI1d
o3ne Yjm pesoro
‘posord ‘uedo

posopo ‘uodo

posoo ‘uedo

posopo ‘uado

[g1] eoanrdepe
poso[o ‘pasolo
‘oarydepe uodo ‘wedo

so1o1[0g 93vd

[F2] SaDd-dd ‘SdDAd

[Pz] sda0d-ud ‘sd0d

MHIOUJ SADI-HA
‘dep saDA-vd
‘[re] saoa
-gd ‘Sd0d

dVSV sisonboi onssy

dVSV sisenbou onsst

[oz] ss ‘lge] sa
~1eq ‘Surdnoin
SdDd-¥d ‘[ve] sddd
-gd ‘Sd04d

Surdnosp SADA-Ud
‘lve] sana
“ud ‘Sd0d

sI9[NpPaYOg

s8urddew juaisjjip €

s8uraearaejul [euorydo
qm Surddew poxiy

Ajrrenuels Ayoreraty
yrm sSurddeuwr

KLyrrenueld Lyorersary
yrm sSurddew

s8urddew jusaisjjip L

[ez] uorouny uesjooq
oA1300(1q Aue

[eg] uorjoung uesjooq

sa1300(1q Aue

sSurddejy ssoIppy

saager j[os
‘umop tomod
o81eyoead 2y aar3ow

umop remod
a3xeyosad 2 aar13o®R

saagor j[os
‘umop tomod
o81eyoaad 2y aarjoe

ysoigea jros

umop temod
a8xeyosad

ysaager jos
‘umop tomod
o81eyoead 2y 2ar3o®

ysaijor y[os
‘umop tomod
a8xeyosad 23 aa13oR

SOPOJN UMO(] I9MOJ

ysoqger jueq-[[e

ysoujol yueq-[re

ysoqged yueq-iod
‘ysoqyor yueq-[re

ysouyor yueq-tod
‘ysaagea jyueq-re

ysoqyor yueq-[[e

ysoigex jueq-[[e

ysoqgor yueq-iod
‘ysouyor yueq-[re

SOPOIN Ysaajoy

TINEH ‘edddn ~ g/INdH Z/TINdH
‘T O/1°PIm TINEH ‘T/T O/I °PIM ‘9/Xs/guaan ‘9/X8/9daan
‘e/edadadi ‘eyaan ‘v/edaddi ‘v/edaddt ~e/1 O/1°PIM
‘v/edaa zyaadi ‘e/zaaa ‘v/eyaa ‘v/edada e/zaaa T O/1°PIM ‘¥/edad| ‘PHAAd1 ‘¥/edad sprepuels WyHd
[¢1] ToPOIN (tzom s1y3)

WvHada gwes

[2] wrgaag

[9] 1o3enUEYy

[¢] ewisnvya

[¥] zwiswvyaa

[c] 0'e sAsSINVHA

0'v sSASINVHEA

sangesg

DRAMSys4.0 13

model (e.g., missing command bus dependencies for multi-cycle commands of
LPDDR4 or HBM1/2).° Besides the performance perspective, for most of today’s
system developments the power consumption and thermal behavior is of great
importance, especially in the field of embedded systems. All simulators except
DrSim offer a functionality for power estimation. DRAMSys3.0, DRAMSys4.0
and DRAMsim3 can also model the thermal behavior of devices. For perfor-
mance evaluation, all simulators output bandwidth-, latency- and power-related
statistics. Moreover, DRAMSim2 supplies DRAMVis [4], a tool that can visu-
alize the bandwidth, latency and power over time. Similarly, DRAMSys3.0 and
DRAMSys4.0 provide the Trace Analyzer for visual result analysis (see Sec-
tion 2.3).

All simulators are also compared with regard to their simulation speed. As
stated earlier, the wall clock time that a simulation requires does not only depend
on the amount of simulated time, but also on the memory access density (accesses
per clock cycle). This can especially be observed for the TLM-based simulators.
For that reason, we investigate the simulation speed for a large range of densi-
ties using artificial traces. To minimize the impact of the simulators’ different
controller implementations (e.g., queuing mechanisms, scheduling policies, fur-
ther bandwidth-improving techniques like read snooping!'®), the memory traces
exclusively provoke read misses and utilize all banks uniformly. Different den-
sities are created by increasing the gaps between accesses. Apart from that, all
simulators are configured as similar as possible (1 GB DDR3-1600 since DDR3
is the only standard supported by all of them, single channel, single rank, row-
bank-column address mapping, open-page policy, run on an Intel Core i9 with
5 GHz), built as release version, and run with a minimum of generated out-
puts. Using these traces, the achieved performance and total simulated time of
all simulators except Ramulator are very similar (maximum deviations of 2 %
because all simulators implement a different power down operation). Ramulator
does not model the bank parallelism properly (commands for a new request are
only issued if the previous request has been finished completely) and therefore
achieves much lower bandwidths.

The simulation speeds of all simulators are shown in Figure 8. For high
trace densities the speeds of the fastest loop-based and TLM-based simulators
(DRAMSim2, Ramulator, DRAMSys4.0 and the gem5 DRAM model) do not
differ much from each other because state changes occur in almost all clock cycles.
At a density of around 0.2 (0.1 for Ramulator due to its lower bandwidth), the
channel controllers start to turn idle and the consumed wall clock time decreases.
While the graphs of all loop-based simulators converge to a fixed value for further
decreasing densities (wall clock time to simulate pure idle cycles), the TLM-
based simulators demonstrate their advantage in the form of a steady decrease,
clearly outperforming all loop-based simulators. During long idle phases they
initiate self refresh operation of the DRAM devices. In this way external refresh
commands can be omitted and no clock cycles have to be simulated at all. Since

9 We will report the missing timing dependencies to the developers of the other sim-
ulators.

10 Using read snooping a read request can be served directly within the controller if an
earlier write request to the same address is still pending.

—_
~

Lukas Steiner et al.

10!

] [T IR I

10°

|

107!

-2
10
— DRAMSys4.0
——— DRAMSys3.0

Wall Clock Time per 10° Clock Cycles [s] (log)

1073 DRAMSim2
——— DRAMsim3
Ramulator
1074 DrSim
gem5 DRAM Model
-5 Ll Ll | | Lo
10
107° 10~ 107° 1072 107" 10°

Memory Access Density (log)

Fig. 8. Simulation Speeds of State-of-the-Art DRAM Simulators

the memory access density of real applications is often located in these lower
ranges (e.g., 71075 - 11072 for the MediaBench benchmarks), TLM-based
simulators can speed up the simulation by several orders of magnitude. Thus,
the exact modeling of a DRAM subsystem in a system context is no longer the
bottleneck from a simulation perspective.

For the TLM-based simulators, DRAMSys4.0 constantly outperforms its pre-
decessor by a factor of 10 to 20, which is the result of our optimizations (see
Section 2.2). The simulation speeds of DRAMSys4.0 and the gem5 DRAM model
are more or less on the same level for high densities. At densities smaller than
1073 the gem5 DRAM model starts to become slightly slower than DRAMSys4.0
because the switching to self refresh operation is implemented less efficiently.

As mentioned in Section 1, a DRAM subsystem simulation consists of a
specific controller model and the model of a specific DRAM standard. Since each
simulator represents a different controller implementation (scheduling policy,
power down operation, request buffer etc.), a fair comparison of accuracy is not
possible; all simulators might yield different results for the same inputs while
still being cycle accurate and standard compliant.

3.2 Cycle-Approximate DRAM Models

Beside the cycle-accurate DRAM simulators, further approaches that approxi-
mate the behavior exist (see Figure 1). In [12] the authors propose an analyti-
cal DRAM performance model that uses traces to predict the efficiency of the
DRAM subsystem. Todorov etal. [9] presented a statistical approach for the
construction of a cycle-approximate TLM model of a DRAM controller based
on a decision tree. However, these approaches suffer from a significant loss in ac-
curacy. More promising approaches based on machine learning techniques have

DRAMSys4.0 15

been presented recently. The paper [10] presents the modeling of DRAM be-
havior using decision trees. In [11] the authors present a performance-optimized
DRAM model that is based on a neural network.

4 Conclusion

In this paper we presented DRAMSys4.0, a SystemC/TLM-based open-source
DRAM simulation framework. Due to the optimized architecture it reaches very
high simulation speeds compared to state-of-the-art simulators while ensuring
full cycle accuracy and standard compliance. DRAMSys4.0 supports a large col-
lection of controller features and DRAM standards and offers unique function-
alities for adaptation and result analysis, making it perfectly suitable for both
fast and truthful design space exploration. In addition, the framework can be
used to validate RTL descriptions of real hardware memory controllers. In the
future we plan to extend DRAMSys4.0 by further emerging DRAM standards
(e.g., LPDDR5 and DDRJ5) and associated new features.

Acknowledgements

This work was supported within the Fraunhofer and DFG cooperation pro-
gramme (Grant no. WE2442/14-1) and supported by the Fraunhofer High Per-
formance Center for Simulation- and Software-based Innovation. Furthermore,
we thank Synopsys and the anonymous reviewers for their support.

References

1. Chirag Sudarshan, et al. A Lean, Low Power, Low Latency DRAM Memory Con-
troller for Transprecision Computing. In Dionisios N. Pnevmatikatos, et al., editors,
Embedded Computer Systems: Architectures, Modeling, and Simulation, pages
429-441, Cham, 2019. Springer International Publishing.

2. Matthias Jung, et al. DRAMSys: A flexible DRAM Subsystem Design Space Ex-
ploration Framework. IPSJ Transactions on System LSI Design Methodology (T-
SLDM), August 2015.

3. Nathan Binkert, et al. The gem& simulator. SIGARCH Comput. Archit. News,
39(2):1-7, August 2011.

4. Paul Rosenfeld, et al. DRAMSim2: A Cycle Accurate Memory System Simulator.
Computer Architecture Letters, 10(1):16-19, Jan 2011.

5. S. Li, et al. DRAMsim3: a Cycle-accurate, Thermal-Capable DRAM Simulator.
IEEE Computer Architecture Letters, pages 1-1, 2020.

6. Yoongu Kim, et al. Ramulator: A Fast and Eztensible DRAM Simulator. IEEE
Computer Architecture Letters, PP(99):1-1, 2015.

7. Min Kyu Jeong, et al. DrSim: A Platform for Flexible DRAM System Research.
http://Iph.ece.utexas.edu/public/DrSim, (Last Access: 15.08.2019).

8. Bruce Jacob. The Memory System: You Can’T Avoid It, You Can’T Ignore It,
You Can’T Fake It. Morgan and Claypool Publishers, 2009.

9. Vladimir Todorov, et al. Automated Construction of a Cycle-approzimate Trans-
action Level Model of a Memory Controller. In Proceedings of the Conference on
Design, Automation and Test in Europe, DATE ’12, pages 1066-1071, San Jose,
CA, USA, 2012. EDA Consortium.

10. Shang Li et al. Statistical DRAM Modeling. In Proceedings of the International
Symposium on Memory Systems, MEMSYS ’19, page 521-530, New York, NY,
USA, 2019. Association for Computing Machinery.

16

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Lukas Steiner et al.

Matthias Jung, et al. Fast and Accurate DRAM Simulation: Can we Further Ac-
celerate it? To be published in proceedings of the Conference on Design, Automa-
tion and Test in Europe, DATE2020, https://www.jung.ms/paper_2020_date.pdf,
March 2020.

George L. Yuan et al. A Hybrid Analytical DRAM Performance Model, 2009.
Shang Li, et al. Rethinking Cycle Accurate DRAM Simulation. In Proceedings of
the International Symposium on Memory Systems, MEMSYS ’19, page 184-191,
New York, NY, USA, 2019. Association for Computing Machinery.

IEEE Computer Society. IEEE Standard for Standard SystemC Language Refer-
ence Manual. (IEEE Std 1666-2011), 2012.

A. Hansson, et al. Simulating DRAM controllers for future system architecture
exploration. In Performance Analysis of Systems and Software (ISPASS), 2014
IEEE International Symposium on, pages 201-210, March 2014.

Matthias Jung, et al. TLM modelling of 8D stacked wide I/O DRAM subsystems:
a virtual platform for memory controller design space exploration. In Proceedings
of the 2013 Workshop on Rapid Simulation and Performance Evaluation: Methods
and Tools, RAPIDO ’13, pages 5:1-5:6, New York, NY, USA, 2013. ACM.
Karthik Chandrasekar, et al. DRAMPower: Open-source DRAM power & energy
estimation tool. http://www.drampower.info, Last Access 15.08.2019.

A. Sridhar, et al. 3D-ICE: Fast compact transient thermal modeling for 3D ICs
with inter-tier liquid cooling. In Proc. of ICCAD 2010, 2010.

MediaBench Consortium. Mediabench. http://euler.slu.edu/ fritts/mediabench/,
2015, last access 28.02.2015.

H. Mubhr et al. Accelerating RTL Simulation by Several Orders of Magnitude Us-
ing Clock Suppression. In 2006 International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation, pages 123-128, July 2006.
Matthias Jung, et al. Fast Validation of DRAM Protocols with Timed Petri Nets.
In Proceedings of the International Symposium on Memory Systems, MEMSYS
’19, pages 133-147, New York, NY, USA, 2019. ACM.

Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Universitidt Ham-
burg, 1962.

Matthias Jung, et al. ConGen: An Application Specific DRAM Memory Controller
Generator. In Proceedings of the Second International Symposium on Memory
Systems, MEMSYS ’16, pages 257267, New York, NY, USA, 2016. ACM.

Scott Rixner, et al. Memory Access Scheduling. In Proceedings of the 27th Annual
International Symposium on Computer Architecture, ISCA ’00, pages 128-138,
New York, NY, USA, 2000. ACM.

Onur Mutlu et al. Parallelism-Aware Batch-Scheduling: Enhancing both Perfor-
mance and Fairness of Shared DRAM Systems. In 35th International Symposium
on Computer Architecture (ISCA). Association for Computing Machinery, Inc.,
June 2008.

Rachata Ausavarungnirun, et al. Staged Memory Scheduling: Achieving High Per-
formance and Scalability in Heterogeneous Systems. In Proceedings of the 39th
Annual International Symposium on Computer Architecture, ISCA 12, pages 416—
427, Washington, DC, USA, 2012. IEEE Computer Society.

A. F. Rodrigues, et al. The Structural Simulation Toolkit. SIGMETRICS Perform.
Eval. Rev., 38(4):37-42, March 2011.

Daniel Sanchez et al. ZSim: fast and accurate microarchitectural simulation of
thousand-core systems. ACM SIGARCH Computer Architecture News, 41:475, 07
2013.

Saugata Ghose, et al. What Your DRAM Power Models Are Not Telling You:
Lessons from a Detailed Experimental Study. Proc. ACM Meas. Anal. Comput.
Syst., 2(3), December 2018.

