
FNOCEE: A Framework for NoC Evaluation by
FPGA-based Emulation

Daniel Pfefferkorn, Achim Schmider, Guillermo Payá-Vayá, Martin Neuenhahn, and Holger Blume
Institute of Microelectronic Systems, Leibniz Universität Hannover

Appelstr. 4, 30167 Hannover, Germany
Email: {pfefferk|schmider|guipava|neuenhahn|blume}@ims.uni-hannover.de

Abstract—This paper introduces FNOCEE, a framework for
the evaluation of NoC-based many-cores systems by FPGA-based
emulation. It uses a task graph-oriented approach to model
applications, while a hardware-accelerated genetic algorithm is
employed to find close-to-optimal solutions to the task mapping
problem. The proposed genetic algorithm is analyzed in detail,
e.g., in terms of mutation rate and number of elite individuals.
In order to illustrate the framework’s capabilities, several case
studies have been performed, wherein scalability of relevant
parallel applications is investigated with regard to the number
and type of available processing cores and the generated traffic
load as a result of inter-task communication.

I. INTRODUCTION

The number of processing cores on a chip has been steadily
increasing over the last years. This is caused by technology
improvements, which have been prospected by Moore’s Law
one the one hand and by the ever increasing computational
demands of applications (e.g. multimedia applications) on the
other hand. These applications typically consist of several
computational tasks, which can be executed in parallel on
different cores.

With the increased number of processing cores on a chip, the
communication among them becomes more and more critical.
Classic communication structures like busses or point-to-point
connections either cannot fulfill communication demands or
are simply too costly to implement. One solution to this
problem is the Network-on-Chip (NoC). Designing a NoC is
not a simple task, as the design space for NoCs is huge, due to
the large number of design parameters (e.g. topology, routing
algorithms). Therefore, a design methodology and framework
is needed to identify the optimal NoC parameter combination
for a certain application or application class.

One essential part in designing a NoC, is the assessment of
performance and power consumption of a given NoC defined
by a set of parameters. A major factor which influences these
performance metrics is the mapping of computational tasks
onto specific computational cores. As for each mapping of
an application onto a NoC the resulting performance has to
be determined, the identification of a mapping which fulfills
the communication requirements at minimal costs is complex.
Thus, fast evaluation of a large number of mappings is
crucial for finding good mappings. Classic simulation-based
approaches cannot fulfill this demand or have to be performed
with reduced temporal resolution.

In this work, a framework for the design of application-
specific NoCs is presented. Performance evaluation is done
using an FPGA-based emulator. To find a near-optimal map-
ping, a genetic algorithm is used, which is implemented on the
FPGA as well. The viability of this framework is demonstrated
in three case studies.

II. RELATED WORK

In the last years, many Network-on-Chip architectures have
been proposed [1]. Most of these NoCs are derived from
computer networks and adapted to the needs of SoCs. Ex-
amples of some of these first prototypes and even products
featuring NoCs are the 80-Tile 1.28 TFLOPS Network-on-
Chip, presented in [2], or the TILE-Gx or TILE-Mx Proces-
sors [3]. The performance and the hardware costs (measured
in power consumption or silicon area) of these NoCs strongly
depend on NoC-specific parameters, like topology [4], data
word length, routing algorithm, and many more [5]. These
NoC parameters span a huge design space for NoCs. Due to
the fact that each application or application-class has different
communication requirements, the appropriate NoC-parameter
combination which fulfills these requirements with minimal
hardware costs has to be found [6], [7].

The mapping of an application on the processor cores
available in the NoC is still a challenge [8], which highly
influences the search of the NoC with minimal hardware
costs. It is a complex, NP-hard problem [9] and cannot be
performed manually for relevant problem sizes. An evaluation
and classification of mapping algorithms is given in [10]. In
recent years, genetic algorithms have been used and evaluated,
showing good performance results [11], [12], [13], [14], [15].

In order to evaluate the performance of a specific task
mapping on a specific NoC architecture, different approaches
from simulation [16] to FPGA emulation [17], [18], [19] can
be used. However, the task mapping is still performed off-line
involving transfers of each individual mapping and, therefore,
extremely increases the exploration time required to fairly
evaluate a given NoC architecture. In this paper, the search
of an optimal static mapping based on a genetic algorithm is
included in the NoC emulation system, highly decreasing the
time required for NoC evaluation.

978-1-4673-7311-1/15/$31.00 ©2015 IEEE 1

NoC Config
- Number of Cores
- Topology
- Rou�ng Algorithm

FPGA Synthesis

Generic Many-Core
NoC System Template

Task Graph Generator

Emula�on System

NoC Map

System
Configura�on

Applica�on
- Parallel vs. Serial
- Data Dependency
- Task Communica�on

Core Config
- Number of ac�ve Cores
- Posi�on of ac�ve Cores
- Core Architecture Type

Mapping Performance

0 1400 2800 4200 5600 7179

Core 1
Core 2
Core 3
Core 4

Core 16
Core 33
Core 34

0 2 4 6 8 10 12 14 16

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

Number of cores

Sp
ee

du
p

3×9− ext
4×4− int
6×6− ext

S0
SC
SA

0 0.5 1 1.5 2 2.5 3 3.5 4

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

Number of coreswith improved architecture

Sp
ee

du
p

Parsync5M0
Parsync15M0
Parsync30M0
Parsync50M0
Parsync70M0

0 0.5 1 1.5 2 2.5

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

Traff c Load

Sp
ee

du
p

3×9− ext
4×4− int
6×6− ext

i

RS RS

RS RS

NI VCNIVC

NI VCNIVC

Fig. 1: Overview of FNOCEE’s capabilities with regard to the
problem space

III. FRAMEWORK FOR NOC EVALUATION BY EMULATION

In order to examine the effects of different topologies and
NoC-sizes on application execution the “framework for NoC
evaluation by emulation” (FNOCEE) has been developed.

A. General Problem Overview

When investigating the benefit of executing a program on
a many-core architecture, it is important to consider multiple
influencing parameters. Software applications feature a certain
inherent degree of parallelism. This can be either data or task
parallelism. Choosing tasks as the atomic unit of computation
within an application leads directly to the problem of map-
ping them efficiently onto available execution units (processor
cores).

This mapping problem is influenced by application aspects,
for example number and duration of tasks and their interdepen-
dency, but also by hardware aspects, such as the number and
type of available processing cores, as well as the properties
of the available communication channels between these cores
(Fig. 1). Since task mapping is of utmost importance to
properly exploit many-core architectures, this problem has to
be solved. With FNOCEE, we use a generic but hardware-
supported approach to model aforementioned properties and
to solve the problem of task mapping.

B. Tasks & Task Mapping

A necessary first step to evaluate application performance
on NoC-based many-core systems is the ability to model them.
Section III-B1 will explain the chosen approach and its advan-
tages and limitations. In the next step, the application model
needs to be combined with the system-specific information to
produce a suitable, if not necessarily optimized, mapping. This
process is described in section III-B2.

1) Task Graphs: An application can usually be described
as the conjunction of a set of tasks and their dependencies.
These dependencies are the result of data dependencies present

Fig. 2: Simple task graph with two tasks, both of which need
1000 cycles to execute on a core of architecture type 0 or 500
cycles on a core of architecture type 1. To execute task B, a
message with a duration of 100 cycles has to be sent from the
core executing task A to core executing task B.

within the application. A common way to describe the afore-
mentioned tasks and their order of execution is a directed
acyclic graph. Tasks are identified by a task ID and form
the graph’s nodes. The edges between the nodes represent
dependencies. The direction of the dependency is identical to
the direction of the edge indicated by its arrow.

Nodes and edges of the task graph can be annotated with
attributes to provide additional information. Generally, nodes
are annotated with an execution time measured in cycles. In
order to precisely specify the execution times for specific
architectures types, within FNOCEE each task is annotated
with the amount of cycles necessary to complete the task on
a specific core type. Edges are labeled with the amount of
data that needs to be transferred in order to allow processing
of subsequent tasks. An example for such a graph is given in
Fig. 2.

Task graphs are stored in the XML-based GraphML format
[20], which is human-readable and allows easy manipulation
as well as automated generation. With the help of the graphical
editor yEd [21] it is possible to visualize, edit and create task
graphs in the GraphML format.

2) Task Mapping: Task mapping can be described as the
non-surjective mapping T → C of a set of tasks T onto a set
of processing cores C. Redundant mappings, where a task is
assigned to more than one core, are not within the scope of
this publication.

An application can only properly benefit from a multi- or
many-core architecture, if its tasks are mapped efficiently.
Fig. 3 illustrates two possibilities to map nine tasks onto two
processor cores. Due to their dependency on task 1, tasks 2
through 6 can only be executed after task 1 has completed.
However, the tasks 7 through 9 have a serial dependency on
task 4. In order to exploit the parallelism of the two available
processing cores, it is essential to execute the independent
tasks in parallel to the serially dependent ones. This results
in a reduction of execution time by 28.6 % and increases the
utilization to 93.3 %.

In order to solve the mapping problem, numerous algorithms
have been proposed. [9] presents a survey on various instances
of the mapping problem. Many of these prove to be NP-
hard, making it impossible to find an optimal solution with

2

Time

Core2

Core1

T1 T2

T3 T4

T5

T6 T7 T8 T9

(a) Inefficient task mapping

Time

Core2

Core1

T1

T2 T3

T4

T5 T6

T7 T8 T9

(b) Efficient task mapping

Fig. 3: Comparison of two possible ways to map 9 tasks onto
2 processor cores

a reasonable amount of resources (e.g. time, computational
and/or storage capability). Depending on the problem, approx-
imation algorithms can help to achieve a “close-to-optimal”
solution, but usually with far less effort. Various algorithms
are presented and discussed in [10]. One of the most capable
of the discussed ones is the genetic algorithm.

Genetic algorithms belong to the class of metaheuristics
[22] and multiple variants are applicable to the problem of
task mapping [11]. Initially, a start population is generated
randomly or with the help of other algorithms. A population
consists of individuals, each representing a candidate solution
within the solution space and described by their genome. A fit-
ness function determines the quality of these solutions. When
generating the next generation, the fittest parent individuals are
chosen for reproduction and new individuals are bred through
crossover (i.e. recombination of the parents’ genomes) and
subsequent mutation (i.e. random gene variation) operations.
The least fit individuals are replaced by the new individuals.
This process is repeated, until a termination criterion (e.g.
satisfying solution, maximum number of generations, compu-
tation time, etc.) has been met.

The fitness function has a significant influence on the
effectiveness of the genetic algorithm. In the special case
of application-oriented NoC optimization, the execution time
shall be minimized. Therefore, the fitness function has to
transform the application’s overall execution time in such a
way, that a shorter execution time results in a higher fitness
value. The authors in [12] use the reciprocal of the execution
time as fitness value. In order to avoid computationally costly
divisions, the method proposed in [13] and [14] has been
implemented. For every generation, the maximum execution
time cmax is determined. The fitness function f : N →
N is defined as: f(ci) = cmax − ci + 1. As a result,
all implementation-specific details are abstracted. In order
to achieve acceptable solutions with analytical optimization
algorithms, the systems behavior would have to be modeled
precisely first, which requires significant additional effort.

A population consists of a set of possible solutions, which
is in our case a set of viable task mappings. Their genomes

C1 C2 · · · Ci · · · CN

Fig. 4: Coding of a task mapping with N tasks (genome).
Each Ci represents a core ID.

p0 : C0
1 · · · C0

r−1 C0
r C0

r+1 · · · C0
N

p1 : C1
1 · · · C1

r−1 C1
r C1

r+1 · · · C1
N

crossover point r

F ront0 Back0

F ront1 Back1

F ront0 Back1

F ront1 Back0

o0 : C0
1 · · · C0

r−1 C0
r C1

r+1 · · · C1
N

o1 : C1
1 · · · C1

r−1 C1
r C0

r+1 · · · C0
N

Fig. 5: Recombination of two parents p to two offsprings o by
exchanging the partial genomes at the crossover point r

are coded in such a fashion that the i-th gene contains the ID
of the core onto which the task with the ID i is mapped (Fig.
4). Choosing this kind of coding yields potential problems, as
two general principles have to be followed [23]:

1) Genes which are related, are close to one another in the
genome

2) Genes only have a small influence on each other
The first principle can be addressed by placing tasks which

are interdependent next to each other in the coding. As
mapping the task graph is a discrete problem, minor changes
in the mapping might result in large differences in the overall
execution time. It is therefore a task-graph-dependent question,
whether the second principle can be abided by.

During recombination, parents shall be selected with a
probability proportional to their fitness value. For a population
of N candidates, a uniformly distributed random value r
is chosen from the right-open interval [0,

∑N
t=1 f(ct)). The

mapping with the smallest index p fulfilling the inequality
r <

∑p
t=1 f(ct) is selected. Two parents p0 and p1 are selected

to generate two offsprings o0 and o1. The genomes of these
parents are recombined according to the one-point crossover
method. For this, again a uniformly distributed random value
r is chosen from the right-open interval [1, L), where L
represents the length of the parents’ genomes. Offspring oj
inherits the genes i for 1 ≤ i ≤ r of parent pj and the genes
i′ for r < i′ ≤ L of parent p1−j (see Fig. 5).

For the mutation of a genome with length L, random values
ri, 1 ≤ i ≤ L from the interval [0, 1) are generated. Gene i
of the genome is mutated if ri is less than the set mutation
probability PM . In this case, task Ti is assigned a new core
for execution. Candidates are all cores of an architecture type
for which Ti defines an execution time. From this set of
candidates, a random core is chosen with uniformly distributed
probability.

The genetic algorithm cannot guarantee that the quality of
a generation’s best solution does not decrease. Therefore, it is
possible to automatically inherit the NE best mappings of the
former generation. This ensures the guaranteed “survival” of

3

the best solutions. Otherwise, these elite mappings could be
removed due to an unlucky selection during recombination.
Additionally, findings in [24] indicate that inheritance of the
best solution(s) improves the algorithm’s convergence.

In order to accelerate the task mapping optimization, the
genetic algorithm has been implemented as a synthesizable
hardware description (mapgen), which is described in section
III-C2. In combination with cycle-accurate execution to eval-
uate a mapping’s fitness, this results in a tremendous overall
speed-up.

C. Hard- and Software Components of FNOCEE

In order to enable evaluation by emulation, soft- and hard-
ware components are necessary. Therefore, FNOCEE consists
of four elements: a task graph defining the application, an
emulation hardware component realizing the NoC and the
surrounding components, a mapping unit assigning each task a
physical execution unit, and the host software which transmits
task graph and cores/core types to use, controls the evaluation
process, and collects the results (Fig. 6). Communication
between host and emulation system is established via the
unified emulation framework (UEMU), which is described in
[25].

1) Virtual Cores: Each task needs to be executed on a
processing unit. Typically, this will be an individual core in
a multi- or many-core system. In order to maintain a high
abstraction level, a concept that can be best described as
“virtual cores” was implemented.

Before starting an experiment, each virtual core is config-
ured to be of a specific architecture type. In order to execute
a task, it will check whether the task’s dependencies have
been resolved, i.e. all other tasks on which the task to be
executed depends have been executed and their results have
been received. If this is the case, an internal counter will be
loaded with the architecture-specific cycle count. It will then
simply decrement this cycle count until it is zero, meaning
that the task has been processed completely. Afterwards, all
virtual cores with depending tasks will be notified by sending
a message through the NoC. The size of this message equals
the value annotated along the edge connecting the two tasks
within the task graph.

Additionally, each virtual core features performance coun-
ters to count the number of cycles the core spends in each of
the following states:

Blocked at least one necessary message has not
been received yet

Executable all necessary data are locally available
Processing the task is being processed by the core
Post-processing task has been processed and messages to

the successors are being created
Completed all outgoing messages have been sent and

the core is ready to process the next task
In order to reduce the overhead incurred by task handling

(dependency checking and updating, post-processing/message
generation) and to avoid blockage due to interaction with the
NoC’s network interface controller (NIC), the virtual core has

been split into five independent submodules as illustrated in
Fig. 7.

The module ctrl connects the virtual core to a serial control
bus, which allows configuration of the core, writing of task
information, requesting the current task’s or the core’s status
information. Operation of this module is independent of the
NoC clock source.

The submodule worker is responsible for processing a task.
After startup, it will receive a list of runnable tasks from ctrl.
It will then start to process the first task on this list by copying
the architecture-specific cycle count to an internal register. The
register value will then be decremented in synchronization
with the NoC’s clock. Once the register value reaches zero, the
task has been processed and its successors need to be notified.
These successors are stored in a list attached to the task. For
each successor task in this, task ID the core ID of the core onto
which the successor task has been mapped and the message
size (edge-annotated in the task graph) can be extracted. A
message is generated accordingly and transferred to the nic
submodule for transmission via the NoC. To decouple task
processing from message transmission, all messages will be
stored temporarily in the nic submodule.

All messages received by the nic from the NoC must be
handled, as they contain task completion information, possibly
allowing a blocked task to be processed. Handling of received
or locally generated messages is the responsibility of the sub-
module updater. It will extract the task ID of the completed
task, perform a lookup for tasks with a matching predecessor
in the list of currently blocked tasks and mark the dependency
for this predecessor as resolved. In case there are no more
unresolved predecessor dependencies, the blocked task will be
labeled as runnable and handed over to the submodule worker
for processing. Once the list of blocked tasks is empty, the ctrl
will be notified of the overall completion of all tasks.

As stated earlier, both nic and worker might be sources
for task completion messages. Although this does not change
the operation of updater, it is worth mentioning that hence
two messages might arrive at the same time. Therefore the
updater submodule is able to store one message per source.
Subsequent messages will only be acknowledged after the
previous message from the same source has been processed.
Messages originating from a different virtual core are handled
with higher priority.

In order to send messages across the NoC, each virtual core
has a nic submodule. Its transmission and reception data paths
are independent, allowing full-duplex transfers, thus further
reducing the task handling delay. After task completion, the
worker submodule sends the nic an information quadruple
containing the task ID of the completed task (TS), the task ID
of the depending task (TD), the recipient core ID (CD) and the
message size (M). Once the egress path is idle, this quadruple
will be used to establish a connection with the recipient’s nic
through the NoC. Afterwards a message header containing TS ,
TD and CD is sent followed by M × wordwidth byte of
pseudorandom data.

The receiving nic will accept the incoming connection

4

Host System FPGA Emula�on System

TX-FIFO

Control

Mapgen

Task
Graph

HW
Config

Experiment
Control

Ethernet

U
EM

U

VC

NoC

VC

VC

VCVC

VC

VC

U
E
M
U

RX-FIFO

VC

BusTranslator

Fig. 6: General overview of FNOCEE. Task mapping optimization with the help of the genetic algorithm is performed within
the module mapgen. All virtual cores (VC) are connected via a serial control bus.

virtual_core

worker

mem

updater

nicctrl

co
n
tr

o
l
b
u
s

N
oC

Fig. 7: Structure of a virtual core

request if it is idle, and prepares the reception of the message
header. Once message header and subsequent data have been
received, TS , TD and CD are handed over to the updater
submodule and the connection is closed.

2) HW-Accelerated Genetic Algorithm: The module re-
sponsible for the generation of task mappings contains mul-
tiple submodules, such as a control and an execution unit
mapgen cu/mapgen eu, a pseudorandom number generator
mapgen prng and a sorting unit mapgen sort (see Fig. 8).
mapgen cu receives all incoming data and commands

addressed to mapgen. It allows configuration of the genetic
algorithm’s parameters (mutation probability, number of elites
and seed value of the PRNG) and is able to receive a list
of tasks to be mapped as well as a list of available virtual
cores including their architecture types. After being provided
with these lists and the necessary configuration data, the task
mapping optimization can be started. The module mapgen cu
will then control the execution of the following steps:

1) Evaluate all task mappings of current generation
2) Copy elite individuals
3) Calculate sum of all fitness values
4) Perform selection of parents
5) Perform crossover recombination
6) Perform mutation
7) If generation limit not reached, restart at 1, else experi-

ment is complete
Note that during evaluation, all task mappings of a gen-

eration are evaluated by processing the entire task graph
once. This will result in message transfers across the NoC
which may lead to congestive behavior and therefore delayed
execution of blocked tasks.

The mapgen cu will instruct the module mapgen eu to
perform recombination, mutation, elite copying and sorting

mapgen

co
n
tr

o
l
b
u
s

config

R
X
-F

IF
O

C
on

tr
ol

 U
n
it

E
xe

cu
ti
on

 U
n
it Memory

RuntimeMapTask
Sort

prng
lfsr lfsr lfsrlfsr

Fig. 8: Hierarchy of the mapgen module

operations. All possible mappings and their individual ex-
ecution times are stored inside a local memory. Evaluated
mappings have to be sorted according to their execution time
prior to choosing the N best. Therefore, the sorting unit
(mapgen sort), based on a parallel shift sort [26], arranges
the stored candidate entries in ascending execution time or-
der. During recombination and mutation operations, multiple
random values are necessary to choose the crossover point
or decide whether a gene is mutated or not. These random
values are generated by the submodule mapgen prng. Since
a seed value may be set, it is possible to exactly re-create
past experiments or perform an experiment with different
random values. The PRNG is implemented via linear feedback
shift registers (LFSRs), which are very suitable for FPGA-
emulation [27].

As stated earlier, a fundamental advantage of our approach
is the precise capture of the dynamic communication behavior
as actual messages are transferred across the NoC. Since task
mapping optimization and task graph execution are performed
via emulation on an FPGA, execution times are extremely
short compared to implementations where the genetic algo-
rithm is implemented in software or the behavior is analyzed
via simulation. With the current setup, it is possible to evaluate
significantly more than one thousand mappings per second
cycle-true. Since the evaluation involves the actual execution
of the task graph, this number is strongly dependent on the
number of execution cycles defined in the task graph itself.

IV. CASE STUDY

To investigate the viability and potential of NoC evaluation
with FNOCEE, we created multiple synthetic task graphs and

5

Sin

S1
par S2

par Sn−1
par Sn

par

Sout

· · ·

· · ·

· · ·

(a) Parsync

Sm
in

Sm
1 Sm

2 Sm
m

Sm−1
in

Sm−1
1 Sm−1

m−1

S1
in

S1
1

· · ·

· · ·

(b) LU

Sm
1 Sm

2 Sm
m

Sm−1
1 Sm−1

m−1

S2
1 S2

2

S1
1

· · ·

· · ·

(c) GJ

Fig. 9: Type of task graphs used for individual experiments.
LU denotes graphs inspired by LU decomposition, GJ graphs
are inspired by the Gauß-Jordan algorithm.

NoC varieties. The conducted experiments are individually
discussed in sections IV-A, IV-B and IV-C.

Fig. 10 shows two basic examples of NoC topologies. All
virtual cores (VC) are connected to the NoC via network
interfaces (NI), which provide a transmit as well as a receive
port independent of each other. Each NI is connected to a
routing switch (RS) via two independent unidirectional links.
The routing switch has a topology-dependent number of ports,
each consisting of the aforementioned two unidirectional links.
The links are 16 bit wide and can introduce errors based
on a configurable bit error probability. Circuit switching in
combination with a “send-and-wait” protocol augmented with
a sliding window is used to transfer data among the NIs. The
routing switches choose the egress ports for data according to
the deterministic XY-routing algorithm, which is known to be
deadlock free in meshes [28].

The NoC components can be connected to form networks
of different topologies. For reasons of simplicity, we chose to
investigate different variations of two basic mesh topologies:

• a 2D mesh, where a core is connected to every RS (intern)
• a 2D mesh, where cores are connected only to peripheral

RS (extern)

Tables I and II give an overview on the basic NoC configu-
rations used and the overall resource usage when synthesizing
for a XilinxTM XC6VLX240T FPGA. The design is logic-
dominated and uses a maximum of 69.47% of the available
block RAM resources and 0.39% of the DSP48E Slices.
Additionally, the overhead for the necessary communication
components and mapping generation (1,509 slices (4.03%)
and 43 RAMB36E1 (14.87%) for τ7) is comparably small,
which allows the evaluation of large NoCs structures on
commonly available emulation platforms.

A. Performance Scaling with Number of Cores

The main motivation for multi-/many-core systems is to
accelerate program execution through means of parallelization.
However, there are limits to the achievable speedup. In 1967,
Gene Amdahl stated what has become known as Amdahl’s
Law [29]. Parallel execution of application with a known serial

TABLE I: Overview of the synthesized NoC configurations.
Dimensions for a 2D mesh result from the number of rows and
columns of routing switches. Network interfaces are included
in the row/column count for ”extern” variants.

Config Topology VCs Width Height RSs Links
τ0 2D-Mesh (int.) 9 3 3 9 21
τ1 2D-Mesh (ext.) 16 3 9 7 22
τ2 2D-Mesh (int.) 16 4 4 16 40
τ3 2D-Mesh (ext.) 16 6 6 16 40
τ4 2D-Mesh (int.) 25 5 5 25 65
τ5 2D-Mesh (ext.) 36 3 19 17 52
τ6 2D-Mesh (int.) 36 6 6 36 96
τ7 2D-Mesh (ext.) 36 11 11 81 180

TABLE II: Total resource usage when synthesizing different
NoC configurations for a XilinxTM XC6VLX240T FPGA

Config Slices RAMB36E1 DSP48E1
τ0 19, 220 (51.10%) 127 (40.63%) 3 (0.39%)
τ1 23, 556 (62.52%) 169 (40.63%) 3 (0.39%)
τ2 26, 188 (69.50%) 169 (40.63%) 3 (0.39%)
τ3 26, 388 (70.03%) 169 (40.63%) 3 (0.39%)
τ4 32, 644 (86.63%) 223 (53.61%) 3 (0.39%)
τ5 35, 812 (95.04%) 289 (69.47%) 3 (0.39%)
τ6 36, 817 (97.71%) 289 (69.47%) 3 (0.39%)
τ7 37, 430 (99.33%) 289 (69.47%) 3 (0.39%)

part f by N processor cores will result in a theoretical speedup
of SA according to:

SA =
1

f + 1−f
N

(1)

Three aspects complicate the direct application of this
law. For most applications, it is difficult if not impossible
to determine the serial part. Furthermore, Amdahl’s law is
continuous, whereas most applications are divided into small
tasks and hence discrete in nature. The achievable speedup is
therefore limited and reached when the number of processor
cores is identical to the number of tasks. A third limitation is
neglect of communication overhead in case of interdependent
tasks which are mapped onto different processor cores. Thus it
may be beneficial to execute interdependent tasks on the same
core although others are available.

In order to investigate the influence of discretization in tasks
and communication cost, a parameterized task graph called
Parsync was created. It consists of an entry node Sin (fork) and
an exit node Sout (join) forming the serial part and n parallel
and independent nodes Si

par(execute) forming the parallel part.
Cycle counts can be adapted to result in a desired serial to
overall ratio, which will be appended as numerical suffix, e.g.
Parsync5 for a 5% amount of serial cycles. These task graphs
were then mapped to different NoC configurations with the
help of our genetic algorithm hardware module.

As a next step, the achieved speedup was examined as a
function of the number of virtual cores. Parsync5 was mapped
to multiple NoCs featuring 16 virtual cores, but with different
topologies. The number of parallel tasks in Parsync5 was set to
16 as well. For each combination the genetic algorithm was run
20 times with different seed values for the PRNG and the best
task mapping was chosen. The results are illustrated in Fig. 11.

6

RS RS

RS RS

NI
VC

NI
VC

NI
VC

NI
VC

(a) Variant: 2D mesh in-
tern

RS RS

RS RS

NI
VC

NI VC

NI
VC

NIVC

NI
VC

NI VC

NI
VC

NIVC

(b) Variant: 2D mesh extern

Fig. 10: Topology variants of a 2D mesh NoC. Each virtual
core (VC) is connected to the NoC via a network interface
(NI), which itself is connected to a routing switch (RS).
Routing switches and network interfaces are connected via
links. The NoC in (a) has a size of 2×2, the NoC in (b) a size
of 4×4, since the coordinate grid is based on the NI positions.

In addition to the achieved speedups, the achievable speedup
according to Amdahl SA, the achievable speedup based on
the length of critical path SC (the longest serial path through
in the task graph) and the ideal speedup with a message size
of zero S0 are included. The task graph contains 16 parallel
tasks, therefore the SA and SC converge for a number of 16
virtual cores. Being almost identical for two cores, SA and all
other speedup curves start to diverge increasingly with higher
numbers of available cores. This illustrates the quantization
effect or - in other words - task granularity. S0 takes this
effect into account and illustrates losses due to communication.
Its steplike behavior results from domination of the overall
execution time by the longest chain of tasks mapped onto a
single virtual core. A mapping of the 16 parallel tasks onto 10
cores will result in at least one core with two mapped tasks.
Once 16 cores are available, the number of mapped tasks per
cores instantly drops to one, resulting in a jump in speedup.

Interestingly, S0 shows a steady increase for the interval
[8, 15]. After the entry task Sin has been processed, 16
messages are generated to inform the successor tasks. These
are sent serially resulting in a delayed start of the parallel
task’s execution, increasing with the task’s ID. Although the
message size is zero, a connection is established along all
involved routing switches, which will result in a few cycles
of transmission delay. Cores that have received this message
earlier will complete task execution earlier, making them very
suitable to process one of the remaining tasks, hence reducing
the overall execution time. The result is a linear correlation
between the number of available cores and the resulting
speedup. Using the detailed analysis mode of FNOCEE, we
can visualize this staggered execution in Fig. 12.

A third effect illustrated by Fig. 11 is the speedup stagnation
for 14 and more available processor cores as the message-
induced overhead outweighs the additional parallelization ben-
efit.

0 2 4 6 8 10 12 14 16

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

Number of cores

Sp
ee

du
p

3× 9− ex t
4× 4− int
6× 6− ex t

S0
SC
SA

Fig. 11: Speed-up for execution of the task graph Parsync5.
The experiment has been conducted for NoC configurations
τ1, τ2 and τ3.

B. Performance Scaling with Traffic Load

An outcome of the previous experiment was the lack of
separation between NoC configurations. As the transmitted
messages for a single task graph were very limited in size
and number, each task graph was instantiated multiple times
in parallel (see III for more information). This could easily be
achieved through graph replication using the graphical editor.

TABLE III: Task graphs used to investigate NoC-utilization
effects. Every graph consists of four identical and independent
partitions. cT represents the overall amount of execution
cycles, cCP the length of the longest serial path (critical path)
in cycles. For LU and GJ graphs the numerical suffix indicates
the number of stages (their structure is illustrated in Fig.9)

Name Parameter Tasks Edges cT cCP

Parsync5x4 f = 0.05 72 128 39, 952 1, 093
Parsync30x4 f = 0.30 72 128 39, 968 3, 437
LU7x4 7 Levels 140 220 39, 944 3, 328
GJ8x4 8 Levels 144 224 40, 320 2, 240

With these combined task graphs, the resulting solution
space is much larger and the genetic algorithm was not always
able to find solutions of constant quality. This becomes evident
when plotting the resulting speedup as a function of the
message size. Graphs in Fig. 13 show a constant decline with
increasing message size with several outliers caused by GA’s
inability to find close to optimal mappings.

Again, speedup for different NoC topologies did not differ
significantly for the task graphs Parsync5x4 and Parsync30x4.
A very distinct separation was visible when using the task
graph LU7x4 (Fig.14). With increased message lengths, the
topology 4x4-int shows the largest speedup values, the topol-
ogy 3x9-ext the smallest. As a result of the increased traffic
load this NoC with its linear layout is now suffering from
transmission delays due to blocked routing switches increasing
the overall execution time. The difference between topologies
τ2 and τ3 originates in differing average path lengths of 3.91

7

0 1400 2800 4200 5600 7179

Core 1
Core 2
Core 3
Core 4

Core 16
Core 33
Core 34
Core 35
Core 36

(a) Task mapping for 9 virtual cores

Fig. 12: Processing of the task graph Parsync5M0 plotted over time on 9 cores. The number of cycles is given in the bottom
axis. Core idle cycles are depicted in red. Tasks are processed and messages are generated in the blue and yellow segments,
respectively.

0 0.5 1 1.5 2 2.5
3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

Traffic Load

Sp
ee

du
p

3× 9− ex t
4× 4− int
6× 6− ex t

Fig. 13: Speedup for execution of the task graph Parsync5x4.
The experiment has been conducted for NoC configurations
τ1, τ2 and τ3.

and 4.34 routing switches, but more research is necessary
regarding the exact behavior of the NoC itself.

C. Performance Scaling for specialized Core Architectures
(heterogeneous SoC)

With the help of FNOCEE, it is also possible to investigate
the overall execution behavior when different core architec-
tures are available. A core with a specialized architecture can
be employed to accelerate execution of serial tasks, which limit
speedup, although this could increase the amount of necessary
hardware resources. This has been described by Hill & Marty
[30].

In order to investigate the impact of specialized core archi-
tectures on the achievable speedup, two additional experiments
were conducted. First, the overall speedup was measured
depending on the number of specialized cores, then core
performance and area were scaled. Again, task graphs of the
Parsync type were used with a varying serial/parallel cycles
ratio. Message size for all task graphs was set to zero (M0).
All 18 tasks (2 serial, 16 parallel) were executed on a NoC
with virtual cores of the two architecture types A0 and A1.
In accordance with [30], architecture type A1 represents an
improvement of A0 accelerating task execution by a factor

0 0.5 1 1.5 2 2.5

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

Traffic Load

Sp
ee

du
p

3× 9− ex t
4× 4− int
6× 6− ex t

Fig. 14: Speedup for execution of the task graph LUx4. The
experiment has been conducted for NoC configurations τ1, τ2
and τ3.

of two, but with a four-fold increase in required hardware
resources. The resulting NoC could hence feature 16 virtual
cores of type A0, four virtual cores of type A1 or all remaining
integer combinations. Fig. 15 shows the resulting speedup for
all possible numbers of improved virtual cores. It is evident
that the integration of a single core of architecture type A1 can
accelerate the overall execution, but the inclusion of more than
one improved core does not increase it further in this scenario,
as more and more A0-type cores are sacrificed, lowering the
parallel execution capability. In the case of Parsync5M0, the
serial part is too small to benefit from accelerated execution,
but parallel execution is slowed due to the lower number of
available A0-type cores.

In the second experiment, the architecture A1 was scaled
to increase performance and area requirement according to
perf(s) =

√
s [30]. The resulting speedups for task graphs

with a high serial portion can be found in Fig. 16. It is notice-
able that an optimal trade-off point of size and performance
exists depending on the graph’s degree of parallelism. For
Parsync30M0 and Parsync50M0, this point is reached when
A1 provides a performance increase of factor

√
11 requiring

11 times the size of A0.
It can be concluded that task granularity and inter-task

8

0 0.5 1 1.5 2 2.5 3 3.5 4

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

Number of cores with improved architecture

Sp
ee

du
p

Pars ync5M0
Pars ync15M0
Pars ync30M0
Pars ync50M0
Pars ync70M0

Fig. 15: Speed-up as a function of the number of specialized
virtual cores

0 2 4 6 8 10 12 14 16
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Relative area required for architecture A1

Sp
ee

du
p

Pars ync30M0
Pars ync50M0
Pars ync70M0

Fig. 16: Speed-up as a function of the size of an improved
core. Overall speedup is plotted against the relative size of a
core with improved architecture type A1 compared with the
base architecture A0. A chip size of 16 A0 units is assumed.

communication have a significant impact effectively limiting
scalability. Specialized core architectures can be employed to
fill the gap at the cost of silicon area increase. With the help of
FNOCEE it is possible to quantify the aforementioned effects
and investigate the impact of changes within the application,
NoC or the executing cores.

V. CONCLUSIONS

In this publication FNOCEE, a framework for the evaluation
by emulation of NoC-based many-core systems has been
introduced. Applications are represented as task graphs and
executed on virtual cores, allowing a closed-loop task mapping
optimization using a hardware-accelerated genetic algorithm.
After problem-matched parameter values for the genetic al-
gorithm had been determined, different experiments were
conducted to investigate scalability effects for an increased

Fig. 17: Task graph Smalltalk: For an optimal mapping, all
tasks of a column have to be mapped onto the same processor,
as otherwise transfer times exceed the tasks’ computation time.

number of virtual cores, increased traffic load and for varying
core architectures.

FNOCEE proved to be a light-weight, yet high-performance
framework able to evaluate more several thousand possible
mappings cycle-true. Its logic-dominated design allows usage
also on smaller FPGA-based emulation platforms. The high
abstraction level for application modeling enables design space
exploration for a wide range of parameters, while preserving
the capability to observe dynamic execution effects on a
cycle-true basis. Therefore, an early analysis of a specific
NoC architecture can be performed during an early design
phase without requiring the implementation of the complete
system. Application behavior can be predicted with regard to
scalability, the influence of inter-task communication and the
use of heterogeneous SoCs.

Future works include the automated task graph generation
based on application profiling information and the extension
of FNOCEE’s NoC component to allow broader compar-
isons of routing algorithms, topologies and introduce online-
monitoring. Additionally, it needs to be determined, how
genome coding for the genetic algorithm can be improved or
whether a different optimization algorithm should be used.

APPENDIX
CONFIGURATION OF THE GENETIC ALGORITHM

Before performing actual experiments, optimal values for
the genetic algorithm’s parameters mutation rate and elite size
had to be determined. For this purpose the task graph Smalltalk
with 10 interdependent tasks was created. Each task needs
1000 cycles of execution time to be processed and generates
two messages with a size of 1500 and 900 transfer cycles
respectively (see Fig. 17).

In order to increase complexity and communication load, the
task graph Smalltalk was instantiated four times in a new task

9

graph called Smalltalk4. With a fixed value of 6 for the number
of elite individuals, the mutation rate was varied from 1% to
64% for a population size of 100. An increase in generations
after which the optimization is terminated results in a lower
overall execution time. A mutation rate of 2% resulted in the
lowest execution times. Each of the experiments were repeated
100 times to provide a more reliable statistical basis, therefore
average values for minimal and average overall execution time
are given in Fig. 18.

Due to emulation and hardware acceleration of the genetic
algorithm it was possible to evaluate a 100k mappings each
containing 40k cycles of execution and 96k cycles of com-
munication time in 58 s, which results in an evaluation rate
of 1,724 mappings

s . The performance is primarily limited by
network-induced communication latencies between host pc
and the emulation system.

0.01 0.04 0.16 0.64

1

1.2

1.4

1.6

1.8

2

·104

Mutation rate

R
un

ti
m

e
(C

lo
ck

cy
cl

es
)

Generation
100
400
700

1000

(a) Average minimal execution
time depending on mutation
rate for 100 experiments

0.01 0.04 0.16 0.64

1.5

2

2.5

3

·104

Mutation rate

R
un

ti
m

e
(C

lo
ck

cy
cl

es
)

Generation
100
400
700

1000

(b) Average mean execution
time depending on mutation
rate for 100 experiments

Fig. 18: Mutation rates from 1% to 64% were evaluated and
are plotted here for selected generations

Afterwards the optimal value of elite individuals were
determined identically. It was found that a higher number of
elite individuals per generation lead to lower overall execution
times, but a value of 10 for a population of 100 individuals
resulted in the best mappings.

REFERENCES

[1] L. Benini and G. De Micheli, “Networks on chips: a new soc paradigm,”
Computer, vol. 35, no. 1, pp. 70–78, 2002.

[2] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, P. Iyer, A. Singh, T. Jacob et al., “An 80-tile 1.28 tflops
network-on-chip in 65nm cmos,” in IEEE International Solid-State
Circuits Conference, San Fransisco, USA, 2007. IEEE, 2007, pp. 98–
99.

[3] T. Corporation, “Tile-gx family of multicore processors,” http://tilera.
com/products/?ezchip=585&spage=614, Tilera Corporation, 2014.

[4] M. Neuenhahn, H. Blume, and T. Noll, “Quantitative analysis of
network topologies for noc-architectures on an fpga-based emulator,”
Proceedings of the URSI Advances in Radio Science–Kleinheubacher
Berichte, Miltenberg, Germany, 2006.

[5] T. Bjerregaard and S. Mahadevan, “A survey of research and practices
of network-on-chip,” ACM Computing Surveys (CSUR), vol. 38, no. 1,
p. 1, 2006.

[6] L. Benini, “Application specific noc design,” in Proceedings of the
conference on Design, automation and test in Europe: Proceedings.
European Design and Automation Association, 2006, pp. 491–495.

[7] T. Ahonen, S. Virtanen, J. Kylliäainen, D. Truscan, T. Kasanko,
D. Sigäuenza-Tortosa, T. Ristimäaki, J. Paakkulainen, T. Nurmi, I. Saas-
tamoinen et al., “A brunch from the coffee table-case study in noc
platform design,” in Interconnect-centric design for advanced SoC and
NoC. Springer, 2005, pp. 425–453.

[8] S. Chai, Y. Li, J. Wang, and C. Wu, “A list simulated annealing algorithm
for task scheduling on network-on-chip,” Journal of Computers, vol. 9,
no. 1, pp. 176–182, 2014.

[9] M. Drozdowski, Scheduling for parallel processing. Springer, 2009.
[10] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating

directed task graphs to multiprocessors,” ACM Computing Surveys
(CSUR), vol. 31, no. 4, pp. 406–471, 1999.

[11] S. Gupta, G. Agarwal, and V. Kumar, “Task scheduling in multiprocessor
system using genetic algorithm,” in Machine Learning and Computing
(ICMLC), 2010 2nd Int. Conf. on. IEEE, 2010, pp. 267–271.

[12] R. Hwang, M. Gen, and H. Katayama, “A comparison of multiprocessor
task scheduling algorithms with communication costs,” Computers &
Operations Research, vol. 35, no. 3, pp. 976–993, 2008.

[13] M. R. Mohamed and M. H. Awadalla, “Hybrid algorithm for multi-
processor task scheduling,” IJCSI International Journal of Computer
Science Issues, vol. 8, no. 3, 2011.

[14] Y. Qu, J.-P. Soininen, and J. Nurmi, “Static scheduling techniques for
dependent tasks on dynamically reconfigurable devices,” Journal of
Systems Architecture, vol. 53, no. 11, pp. 861–876, 2007.

[15] Z. Shi, “Scheduling tasks with precedence constraints on heterogeneous
distributed computing systems,” 2006.

[16] A. Wieferink, M. Doerper, R. Leupers, G. Ascheid, H. Meyr, T. Kogel,
G. Braun, and A. Nohl, “System level processor/communication co-
exploration methodology for multiprocessor system-on-chip platforms,”
in Computers and Digital Techniques, IEE Proceedings-, vol. 152, no. 1.
IET, 2005, pp. 3–11.

[17] M. Neuenhahn, J. Schleifer, H. Blume, and T. Noll, “Quantitative
comparison of performance analysis techniques for modular and generic
network-on-chip,” Advances in Radio Science, vol. 7, no. 8, pp. 107–
112, 2009.

[18] P. G. Del Valle, D. Atienza, I. Magan, J. G. Flores, E. A. Perez, J. M.
Mendias, L. Benini, and G. De Micheli, “A complete multi-processor
system-on-chip fpga-based emulation framework,” in Very Large Scale
Integration, 2006 IFIP Int. Conf. on. IEEE, 2006, pp. 140–145.

[19] B. Senouci, F. Petrot et al., “Large scale on-chip networks: an accurate
multi-fpga emulation platform,” in Digital System Design Architectures,
Methods and Tools, 2008. DSD’08. 11th EUROMICRO Conference on.
IEEE, 2008, pp. 3–9.

[20] G. Team, “The graphml file format,” http://www.graphml.graphdrawing.
org/index.html, GraphML Project Group, 2015.

[21] yWorks GmbH, “yed graph editor,” http://www.yworks.com/en/products/
yfilesd/yed, yWorks GmbH, 2015.

[22] O. Roeva, S. Fidanova, and M. Paprzycki, “Influence of the population
size on the genetic algorithm performance in case of cultivation process
modelling,” in Computer Science and Information Systems (FedCSIS),
2013 Federated Conference on. IEEE, 2013, pp. 371–376.

[23] D. Beasley, R. Martin, and D. Bull, “An overview of genetic algorithms:
Part 1. fundamentals,” University computing, vol. 15, pp. 58–58, 1993.

[24] S. Jin, G. Schiavone, and D. Turgut, “A performance study of multi-
processor task scheduling algorithms,” The Journal of Supercomputing,
vol. 43, no. 1, pp. 77–97, 2008.

[25] M. Kock, S. Hesselbarth, M. Pfitzner, and H. Blume, “Hardware-
accelerated design space exploration framework for communication
systems,” Analog Integrated Circuits and Signal Processing, vol. 78,
no. 3, pp. 557–571, 2014.

[26] K. Ø. Arisland, A. C. Aasbø, and A. Nundal, “Vlsi parallel shift sort
algorithm and design,” INTEGRATION, the VLSI journal, vol. 2, no. 4,
pp. 331–347, 1984.

[27] C. Maxfield, Bebop to the Boolean boogie: An unconventional guide to
electronics. Newnes, 2008.

[28] M. Li, Q.-A. Zeng, and W.-B. Jone, “Dyxy: a proximity congestion-
aware deadlock-free dynamic routing method for network on chip,” in
Proceedings of the 43rd annual Design Automation Conference. ACM,
2006, pp. 849–852.

[29] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proceedings of the April 18-20,
1967, spring joint computer conference. ACM, 1967, pp. 483–485.

[30] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,”
Computer, no. 7, pp. 33–38, 2008.

10

