
An Overview of Methodologies and Tools
in the Field of System-Level Design

Vladimir D. Živković1 and Paul Lieverse2

1 Leiden Institute of Advanced Computer Science (LIACS), Leiden University,
Niels Bohrweg 1, 2333 CA Leiden, the Netherlands

lale@liacs.nl
http://www.liacs.nl/˜cserc/

2 Delft University of Technology, Information Technology and Systems,
Delft, the Netherlands
lieverse@ieee.org

Abstract. In this paper we present an overview of system level design
methodologies and tools. Eight tools and their underlying methodologies
are analysed. We give a short description of each of them and point
out some of their strengths and weaknesses. We conclude that there still
is a lot of room for research on the design of embedded systems-on-a-
chip, especially in the areas of mixed-level simulation, verification, and
synthesis.

1 Introduction

The increasing interest in embedded systems has heightened the need for method-
ologies and tools suitable for modelling, simulation and design of embedded
systems. We focus on heterogeneous embedded systems, i.e., those that mix pro-
grammable and dedicated components. These systems are of particular interest
since they are used as underlying platforms in multimedia and communication-
oriented products. In order to deal with the complexity of such systems, design-
ers rely more and more on methodologies and tools that allow them to explore
their designs at the system-level. In this document, we report on today’s re-
search in the area of system-level methodologies and tools for heterogeneous
signal processing systems. We discuss eight tools and their underlying method-
ologies. Apart from a short description, we also point out some of their strengths
and weaknesses. They are: Ptolemy, UC San Diego/NEC, POLIS, VCC, COSY,
PAMELA, SystemC, and SPADE. Our choice of methodologies and tools was
based on the availability of either the methodologies and tools or information
about them.

This paper is organised as follows. First, we give some general remarks about
directions in today’s methodologies and tools in Section 2. Then we briefly de-
scribe each of the methodologies and tools in Sections 3 through 10. Finally, we
draw some conclusions in Section 11.

E.F. Deprettere et al. (Eds.): SAMOS 2001, LNCS 2268, pp. 74–88, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



An Overview of Methodologies and Tools 75

2 General Observations

As we have indicated, modern embedded systems become increasingly complex
and not easy to design. They typically have to meet real-time constraints, must
be reliable and fault tolerant, and have a low power consumption. Designers have
to verify each of these constraints in a model of an embedded system. Models
become more accurate when more details are added. However, this also increases
the time needed for system model development and simulation. In order to reduce
the time needed for modelling and simulation, the evaluation of design choices
should move to the early phases of the design process. This can be illustrated in
terms of the abstraction pyramid [15] in Figure 1. The cost of model construction
and model evaluation is higher at the more detailed levels of abstraction, while
the opportunities to explore alternative realizations is significantly reduced at
these levels. Therefore, methodologies to deal with the exploration of embedded
systems at the system level are of interest.

models

Alternative realizations (Design Space)

models
back−of−the−envelope (conceptual)

executable behavioural

approximate (performance)
models

cycle−accurate
models

VHDL

explore

explore

exploreA
cc

ur
ac

y

C
os

t

High

Low

Le
ve

l o
f a

bs
tr

ac
tio

n

Low

High

O
pp

or
tu

ni
tie

s
synthesizable

Fig. 1. The abstraction pyramid

In the past embedded system designers were almost exclusively operating
at the VHDL level. In Figure 2 this is represented with the black dotted arrow.
Skipping intermediate levels between high and low levels is only acceptable when
a few low level parameters have to be explored. Otherwise, the lower levels are
too detailed to explore larger design spaces. Indeed, the complexity of embedded
systems grows constantly, and the design approach labelled as ’guru’ in Figure 2
is no longer feasible for these complex system-on-a-chip designs. In order to cut
time-to-market, embedded system design is now widely believed to benefit from
a step-by-step design. This approach is represented by the white dotted arrow



76 Vladimir D. Živković and Paul Lieverse

in Figure 2. At each level the alternatives are explored before going to the next
level.

Guru Step−by−step

?

?
models

VHDL, Verilog

synthesis

cycle−accurate (CA)

executable behavioural

High
conceptual level

device/product level

Le
ve

l o
f a

bs
tr

ac
tio

n

Low High

A
cc

ur
ac

y 
&

 C
os

t

Low

models

approximate (performance)

models

Fig. 2. Guru vs. Step-by-step approach

An interesting abstraction level is the approximate-accuracy level in Figure
1, otherwise known as time-approximate [13], or performance model level [11].
This level bridges the gap between models at behavioural or un-timed [13] level
and models at cycle-accurate level.

Applications

Performance
Numbers

Performance
Analysis

Mapping
Architecture

Fig. 3. The Y-chart [16]

Another approach to cut time-to-market is to allow reusability. The Y-chart
approach [15], [18] is a general scheme that uses reusability for an efficient design-
space exploration. It enables reuse by separating architecture and application
modelling. This approach is illustrated in Figure 3. The Y-chart approach per-
mits multiple target applications to be mapped one after another onto candidate
architectures in order to evaluate performance. The resulting performance num-
bers may inspire an architecture designer to improve the architecture. The de-
signer may also decide to restructure the application(s) or to modify the mapping
of the application(s).



An Overview of Methodologies and Tools 77

Different methodologies have a different view on how application modelling
and architecture modelling in Figure 3 can be performed. Some promote hard-
ware/software co-design based on Models of Computation (MoC) ([4], [12]) and
Models of Architecture (MoA) ([18], [2], [12]). Others do not distinguish be-
tween MoCs and MoAs but model both the application and the architecture
with MoCs. Which MoC or combination of MoCs to chose depends on the nature
of the application domain at hand. Many MoC choices are available: Commu-
nicating Sequential Processes (CSP), Continuous Time (CT), Discrete Events
(DE), Distributed Discrete Events (DDE), Discrete Time (DT), Finite State
Machines (FSM), Process Networks (PN), Synchronous Data Flow (SDF), and
Synchronous/Reactive (SR) models, or a mixture of these models. While MoCs
are well formalised, MoAs have not received that much attention. Architecture
features, such as time, types of resources, and resource contention are not easily
captured in the formalisms of a single MoC. Figure 4 illustrates how multiple
MoCs could be used to model an architecture. In this figure, the application is
modelled as a Kahn Process Network (KPN) [17], and the architecture, onto
which the application is to be mapped, is modelled in terms of three MoCs: a
KPN-like model (with blocking writes in addition to blocking reads), a CSP-like
model (with rendezvous), and the FSM model. While the application model is
homogeneous, the architecture model is not. One can say that both the applica-
tion and the architecture are specified in terms of MoCs. However, one can also
call the combination of MoCs for modelling the architecture a MoA.

Fig. 4. MoA as an union of different MoCs



78 Vladimir D. Živković and Paul Lieverse

In the following sections we briefly present some of the available methodolo-
gies and tools in system-level design. A global overview is given for each method-
ology/tool, and the presence or absence of particular features is pinpointed.

3 Ptolemy

The Ptolemy framework provides methods and tools for the modelling, simu-
lation, and design of complex computational systems [4]. It focuses on hetero-
geneous system design using MoCs for modelling both hardware and software.
Important features are:

1. The ability to construct a single system model using multiple MoCs which
are interoperable, and

2. The introduction of disciplined interactions between components, where each
of them is governed by a MoC.

The interoperability between different MoCs is based on domain polymor-
phism, which means that components can interact with other components within
a wide variety of domains (MoCs). Also, the Ptolemy methodology does not have
the objective to describe existing interactions, but rather imposes structure on
interactions that are being designed. Components do not need to have rigid
interfaces, but they are designed to interact in a possible number of ways. Par-
ticularly, instead of verifying that a particular protocol in a single port-to-port
interaction can not deadlock, Ptolemy tends to focus on whether an assemblage
of components can deadlock. Designers are supposed to think about an overall
pattern of interactions, and to trade off expressiveness for uniformity.

Ptolemy does not explicitly support the Y-chart approach, neither does it
strictly separate application features and architecture features. There exists only
a single implementation of a specified system, which is on top of a Java Virtual
Machine. Also, it does not have a layered abstraction approach like, for example,
VCC has (see Section 6). However, because of its excellent features, some projects
that deal with deriving methodologies for system design use Ptolemy as a kernel
for the implementation of a particular methodology into a tool-set. For example,
an extension of the Ptolemy kernel in the direction of a Y-chart oriented tool for
evaluation of architecture trade-offs, is described in [5].

4 UC San Diego/NEC Methodology

A design space exploration methodology of communication architectures is pre-
sented in [6]. The aim of the methodology is to obtain an optimal and automatic
mapping of various communication mechanisms among system components onto
a target communication architecture template. This is a sensible objective be-
cause the volume and diversity of data and control traffic exchanged among
System-on-Chip (SoC) components imply that on-chip communication could
have severe impediment to system performance and power consumption. What is



An Overview of Methodologies and Tools 79

needed, is SoC communication protocols that efficiently transport large volumes
of heterogeneous communication traffic.

The methodology supports an efficient performance analysis of inter-compon-
ent communication in a bus oriented system. It also supports accurate modelling
of communication resources. The method assumes that a communication archi-
tecture template is given (see Figure 5), but communication protocols are not.

Bus1 I/F

C2

Bus1 I/F

C1

B
rid

ge
B

us
1 

I/F

B
us

2 
I/F

Bus1 I/F Bus1 I/F Bus2 I/F Bus2 I/F

C3 C4 C7 C8

Bus 1
Bus 2

Bus2 I/F

C5

Bus2 I/F

C6

Fig. 5. Predetermined architecture topology in the methodology described in [6]

The methodology consists of two steps:

1. A constructive algorithm, that determines an initial architecture for mapping
various SoC communications onto specific paths in a template communication
topology.

2. An iterative improvement strategy, that generates optimised mappings, as
well as carefully configured communication protocols.

In order to support accurate modelling of dynamic effects, e.g., resource con-
tention, a trace-based approach is employed. First, all computational and com-
munication events that originate from a hardware-software co-simulation of a
specified system, are captured in traces. Second, these traces are converted into
a communication analysis graph. This graph is the data-structure on which all
algorithms used in the methodology are performed.

The methodology provides efficient performance analysis to drive the ex-
ploration algorithms of communication architectures. The resulting solutions
are characterised by a significant improvement over the initial solutions. The
methodology is narrowed to a particular architecture template, but it could be
extended to more general architecture template. Also, it could be used as a
source of ideas for extending more general methodologies that have problems
with communication mapping and optimisation.

5 Polis

Polis is a design environment for control-dominated embedded systems [12]. It
supports designers in the partitioning of a design and in the selection of a micro-



80 Vladimir D. Živković and Paul Lieverse

controller and peripherals. It can generate C-code for the software part, including
a simple Real-Time Operating System for the microcontroller, and HDL code for
synthesis of hardware. It also provides an interface to verification and simulation
tools, as well as an embedded (software) simulator.

The underlying MoC used for representation of applications in Polis is the
Co-design Finite State Machines (CFSMs). A CFSM is a specialised FSM that
incorporates the unbounded delay assumption: In a classic FSM, only the idle
phase can have any duration between zero and infinity, the other phases have
a duration of zero. The CFSM model can also be described as globally asyn-
chronous/locally synchronous. A system is modelled as a network of interacting
CFSMs communicating through events. The events are broadcasted to all con-
nected CFSM.

A system specification is given either using a graphical FSM editor, or using
the synchronous language Esterel. The specification is composed of separate
modules. Each module is a CFSM. The analysis of a system at the behavioural
level can be carried out either with formal tools or by simulation. In the latter
case the Ptolemy simulation environment is used.

The Polis environment supports system partitioning by providing useful fig-
ures about the partitions. For example, for each module in the software partition,
it provides estimations of the execution time and code size. For the hardware
modules it gives the number of primary inputs and outputs and the number of
latches.

Polis offers several options for simulation:

1. A basic CFSMs simulator that gives all signals and internal states, and that
can track the sources of the signals,

2. A simulation of the software partition, where only external signals can be
watched,

3. The Ptolemy DE1 domain simulation of the software partition, and
4. A number of different output formats, such as behavioural VHDL, that can

be used for simulation in other simulators.

On the other hand, Polis does not offer the following:

1. Representation of system specification in terms of any other MoC except
CFSM,

2. Estimation techniques for more complex processor models, other than simple
micro-controllers,

3. Non-dedicated type of communication among components, and
4. Multiple hardware and software partitions (there are only 2 partitions in

Polis: one hardware and one software)

Items 1. and 2. imply that the POLIS system can not be used efficiently for
designing embedded systems that are not control dominated.

1 see Section 2



An Overview of Methodologies and Tools 81

6 VCC – Virtual Component Co-design

The Cadence VCC (Virtual Component Co-design) toolset is built on top of the
toolset in the Polis framework. The toolset is intended to support communication
refinement. The VCC approach is illustrated in Figure 6. First, the functional
behaviour of the entire system is captured and verified, thereby re-using elements
from behavioural libraries and algorithmic fragments. Similarly, target architec-
ture is captured by re-using existing architecture IP components (DSP cores,
micro-controllers, buses, and RTOSs). The next step involves a manual map-
ping of behavioural functions and communication channels onto the appropriate
architecture resources. The system is evaluated in terms of, e.g., speed, power
consumption, and cost. This is a performance analysis step. Then, architecture,
behaviour, and mapping for the given system specification are explored until
an optimal solution is obtained. Finally, the target architecture is refined into
a detailed hardware and/or software implementable architecture. The refined
target architecture can be passed to external environments for hardware and
software implementations. One important step which is not visible in Figure 6
is co-verification. Co-verification is performed between the architecture and the
functional levels and is used for detecting timing problems and bugs.

Architectural Level

Mapping Level

Functional Level

VCC by Cadence Design Systems

Refine HW/SW
uArchitecture

Map Behaviour to
Architecture

Performance
Back−Annotation

Verify
Performance

Verify
Architecture

Verify
Behaviour

Capture
Architecture

Capture
Behaviour

Behavioural
Libraries

Architecture
Libraries

Link to
HW/SW

Implementation

Link to
uArchitecture
Verification

SPW BONeS C

Fig. 6. POLIS/VCC related methodology [7]

VCC can be used together with SPW (Cadence’s Signal Processing Worksys-
tem) and BONeS (Cadence’s system simulation kernel), as it is shown in Figure
6. SPW and BONeS are useful for specifying behaviour and simulating perfor-
mance models, respectively. For more information, see [8].

VCC integrates a number of technologies. It provides several input formats
for system behaviour, including C/C++. Also, it unifies heterogeneous control
and data-flow models. The system behaviour can be given using many different



82 Vladimir D. Živković and Paul Lieverse

MoCs, but all of them are actually implemented on top of CFSMs, that plays a
dominant role as meta-model in VCC. Moreover, system architecture and system
behaviour are well separated. The main VCC features are:

1. Higher abstraction level of architectural estimation models than the current
cycle-accurate simulation models,

2. Evaluation of an architecture via mapping of a system behaviour onto an
architecture implementation, followed by performance analysis,

3. Interface based communication design.

The third feature has been exploited by the COSY project (see next Section).
Also, VCC follows the Y-chart approach. However, a specification of a system
behaviour can be simulated only jointly with a system performance model. This
means that independent functional simulation, i.e., independent of lower perfor-
mance related levels of abstraction, is not possible.

7 COSY

In the COSY (COdesign Simulation and SYnthesis) methodology [10], VCC is
used in order to obtain an infrastructure for mixing and matching software and
hardware components (IPs). Focus is on communication refinement. The input
behavioural specification is given using YAPI, Y-chart Application Program-
mer’s Interface [9]. TSS, Philips’ internal Tool for System Simulation, is used for
the simulation of a refined target architecture. Furthermore, the COSY approach
substantially simplifies the design process compared to Polis or VCC. One rea-
son for this is that the levels of abstraction for the communication mechanism
that are introduced by the VSI Alliance, i.e., application level, system level, vir-
tual component level, and physical transfer level, are adopted by this approach.
Figure 7 shows the definition of the levels of communication in COSY.

The COSY APP2 level in Figure 7 serves to implement application Process
Network (PN) models. At this level an executable untimed specification is used,
i.e., a YAPI model [9].

After mapping an application PN onto an architecture, APP communication
transfers (or transactions) are refined into system transactions (the COSY SYS
level in Figure 7). Functionally, APP, SYS, VCI, and PHY transactions are
equivalent. In contrast with APP level the SYS level designers can implement
certain functions either as software tasks on a programmable processor core, or
as a dedicated coprocessor. However, at the SYS level, transactions still operate
on abstract data-types, e.g., video-frames. Hence, the SYS level can be seen as
the timed-functional abstraction level used in SystemC (see Section 9). In order
to map the high-level I/O semantics and to refine them into the more detailed
on-chip communication interfaces, a new level is required. At this VCI level, the
interfaces work with addresses and split data in chunks managable by a bus or a
switching network. The COSY system integration flow relies on the simple VCI
2 see Figure 7 for the meaning of acronyms in this section



An Overview of Methodologies and Tools 83

Module
Implementation

Functionality
Body

On−Chip−Bus
Virtual Component Interface

Physical Bus or Switching
Network Interface

Delay (i.e., implementation) independent

Above HW and SW boundaries

"Any On−Chip−Bus" Operations

Bus Wrapper

Module Interface
Physical Bus Transfers

Application Programming Interface

System Communication Interface

C

P C

8P

CP

CP

APP

SYS

VCI

PHY

Fig. 7. COSY related transaction levels [10]

wrappers that translate the protocol used by VCI compliant interfaces into the
physical protocol of the selected bus. The final level deals with physical bus size,
signalling, and arbitration protocols. This level is marked as PHY in Figure 7.
A simulation model at this level can be used to calibrate the estimation models
at higher levels of abstraction.

The benefit of COSY is that a designer can, starting from pure behavio-
ural/functional specification, do communication refinement and design-space
exploration using generic performance models, and efficiently get to an opti-
mal implementation. Furthermore, he can effectively exchange IPs because of
clear separation of functionality and architecture, as well as the separation of IP
behaviour and communication.

8 PAMELA

System performance modelling can be also done using a modelling language. In
this section we discuss the tool PAMELA (Performance Modelling Language)
[11]. The objectives of PAMELA are:

1. Improving model accuracy by allowing dynamic behaviour, and
2. Providing a source language for a static performance modelling that yields

an analytic (compile-time) model.

In order to cope with these conflicting goals, PAMELA imposes some restric-
tions in particular with respect to the modelling of synchronisation, so that the



84 Vladimir D. Živković and Paul Lieverse

objectives can at least partly be achieved. It uses highly structured language
operations to describe four factors that determine parallel system performance
modelling: conditional synchronisation (CS), mutual exclusion (ME), conditional
control flow (CCF), and basic calibration of performance models (BC).

There are few features that should be observed:

1. PAMELA gives priority to static compile-time analysis, which goes at the
cost of possible reduced accuracy. So, PAMELA could be seen as an analysis
method and not as a performance modelling method. However, the PAMELA
model does not fully exclude dynamic behaviour and does give more accurate
performance measures than fully static models. See [11].

2. PAMELA does not distinguish separate formalisms to model programs and
machines - there is no distinction between MoC and MoA. The Y-chart
approach is thus not supported explicitly.

3. PAMELA does not support re-usability and extension of models clearly. In
contrast to SPADE or Ptolemy, PAMELA was not designed to do so.

9 SystemC

Originally intended for software design, neither C nor C++ are suited to model
hardware [14]. There are two ways to remedy this lack: either to build syn-
tax extensions, or to introduce specific class libraries. The second approach has
been taken by the developers of SystemC. Currently, SystemC has wide support
both from commercial and academic side, and tends to become a standard as a
language based modelling tool for System-level design.

With SystemC, embedded systems can be described by means of multiple
concurrent processes. The underlying simulation kernel of SystemC is built on
top of a co-routine based multithreading library.

By providing a C++ class library almost all kind of communication mecha-
nisms can be modelled. The remote procedure call mechanism is used to model
master-slave communication at the high abstraction level. Moreover, version 2.0,
which is supposed to be available at the second half of 2001, is going to support
user defined types of communication.

SystemC uses modules, which usually encapsulate some component, either a
processing element or a communication block, and which can contain other mod-
ules or processes. Processes serve to capture functionality, and can be reactive
either to any input signal or to a clock. Also, processes can be either synchronous,
meaning they include timing control statements or conditional synchronisation,
e.g., wait(delay), and instructions between waits are timeless, or asynchronous,
meaning instructions are timeless, and local variables are redefined each time
the process is invoked [13].

Another benefit of the library based implementation of hardware objects is
that SystemC is ANSI C++ compliant; hence, an application and an archi-
tecture (whole system) can be modelled within one and the same simulation
environment.

System C distinguishes several levels of abstraction:



An Overview of Methodologies and Tools 85

Mapping

explore

Performance
analysis

Architecture
model

Kahn model
Application

C-code
Application

Architecture
specification

blocks
Architecture

analysis
Workload

explore

Fig. 8. The SPADE methodology flow

1. Untimed functional: control/dataflow MoCs
2. Timed functional: behavioural processes,
3. BCA/CA functional: bus-cycle-accurate/cycle-accurate architecture modules.

Modelling is possible at all levels of abstraction. Furthermore, SystemC pro-
vides interoperability among different levels of abstractions. That helps in deal-
ing with large scale system complexity - simply we are allowed to model certain
parts at the CA level, while others are at higher functional levels.

Specifications given within the SystemC context are executable. As a result,
model verification is possible. It supports modelling of both hardware and soft-
ware, and has support for low level hardware models. Because of a broad support,
SystemC tends to become a standard, which would empower re-use and sharing
of models.

SystemC itself should not be considered as a methodology; it is a modelling
language. But as such, it may have impact on the exchange and interoperability
of IP’s at the various levels of abstraction.

10 Spade

In this section we present a concise description of the Spade methodology [1],
[16]. Spade stands for System-level Performance Analysis and Design-space Ex-
ploration. It is both a methodology and an implementation for high level system
modelling and evaluation. The Spade methodology follows the Y-chart approach
introduced in Section 2. The methodology flow is illustrated in Figure 8. In
this flow we recognise the aspects of Y-chart application modelling, architecture
modelling, mapping and performance analysis. We now briefly comment on the
various parts in Figure 8.

For application modelling Spade uses Kahn Process Network MoC [17] in
order to make task level parallelism and communication explicit. The Kahn pro-



86 Vladimir D. Živković and Paul Lieverse

cesses can run in parallel, but internally each of them is sequential. They com-
municate by token-exchange via unbounded channels. The application model
represents the workload that is imposed on an architecture. The workload con-
sists of two parts: communication workload and computation workload. Com-
munication workload is seen through actions on channels, while computation
workload is annotated explicitly. If an application model is run independently of
an architecture model, a designer can do workload analysis.

Spade uses a building block approach for architecture modelling. Each ar-
chitecture component is instantiated according to an architecture specification.
Also, architecture components are generic building blocks. They describe only a
timing behaviour, and not a functional behaviour. A set of parameters that is
given in the architecture specification, is directly related to the timing behaviour
of a particular component.

Spade supports an explicit mapping step, where each application process is
mapped on a particular architecture component. Spade uses trace-driven execu-
tion to map the workload on an architecture model. In other words, application
processes generate traces which drive architecture components. Traces contains
stamps of communication and computation activities for each process.

When the application model, architecture model, and mapping are available,
then Spade can perform simulation. After the execution, Spade provides some
performance numbers: number of cycles processor was executing, was switching
context, was busy with I/O or stalling or was idle, bus utilisation, and many
others. These numbers should give guidelines to a designer of what are the bot-
tlenecks or which parts of the architecture are under-utilised. The performance
numbers can later on be visualised, analysed, and used for generating metrics
information.

Since Spade has to obtain some hardware performance numbers, a hardware
simulator tool has been included. Currently, this simulator is TSS (see Section
7), which is a BCA-level simulator. BCA-level simulators are typically slower
than DE simulators at the higher levels of abstraction. While this is a drawback,
an advantage is that in this environment it may be possible to easily perform
mixed level simulation and exploration.

11 Conclusion

We have reported on a study that we conducted to evaluate and compare dif-
ferent features of some embedded system design methodologies and tools that
are available today. Although they are all intended to be used in the field of
system-level design, they are very diverse.

We studied eight different methodologies and tools: Ptolemy, UC San Diego/-
NEC methodology, POLIS, Cadence VCC, COSY, PAMELA, SystemC, and
Spade. In Table 1 we summarise their most interesting properties.

We conclude that the presented methodologies and tools differ from each
other in their approach to hardware/software co-synthesis, e.g., Y-chart support



An Overview of Methodologies and Tools 87

Table 1. Simultaneous overview of properties of presented methodologies & tools.

Methodologies & Tools �→ Ptolemy UCSD/NEC POLIS VCC COSY PAMELA SystemC SPADE
Commercial - - - + +/- - - -
Available + - + + - + + +/-

Y-chart supported - + + + + ◦ - +
MoC variety supported + - - ◦/- ◦ - ◦ -

MoA support - ◦ ◦ + + - ◦ +
Dynamic aspects modelling + + + + + + + +

Formal analysis & verification - ◦ + ◦ ◦ + - -
Reusability + + + + + - + +

Complex designs ◦ ◦ - + + - + +
Multiple abstraction levels - ◦ + + + - + ◦

Mixed level simulation - - ◦ - ◦ - + ◦
Support for Synthesis - ◦ + ◦ ◦ - - -

in the third row in Table 1, as well as in their use of MoCs, e.g., in the fourth
row in Table 1, and their use of MoAs, in the fifth row in Table 1.

Although most of the methodologies and tools share some common features,
the overview shown in Table 1 indicates that from our selection of methodologies
and tools COSY is the most complete one. The features shown in Table 1 also
do suggest that (1) today’s embedded system design methodologies and tools do
not yet solve all design problems, and thus, (2) there is plenty of room for fur-
ther research, e.g., support for synthesis, multiple abstraction levels, and formal
analysis and verification. Specifically, there is more work to be done to master
complexity in designs and to support mixed abstraction levels (rows 9 and 11 in
Table 1).

Acknowledgements

This study was performed in part in the Archer project, funded by Philips Semi-
conductors. We want to thank Ed Deprettere (Leiden University), and Pieter van
der Wolf (Philips Research Laboratories) for their contributions to this paper.

References

1. P. Lieverse et al.: A methodology for architecture exploration of heterogeneous
signal processing systems. In Proc. 1999 Workshop on Signal Processing Systems,
Taipei, Taiwan, Oct. 1999.

2. W. Wolf: Hardware/Software Co-Synthesis Algorithms. In System-Level Synthesis,
A.A. Jerraya and J. Mermet (eds.), pp. 189-217, Kluwer Academic Publishers,
1999.

3. J.S. Davis II: Order and Containment in Concurrent System Design. In PhD thesis,
University of California at Berkeley, Fall, 2000.

4. E.A. Lee et al.: Overview of The Ptolemy Project. Technical memorandum
UCB/ERL M01/11, University of California at Berkeley, March, 2001.

5. E. Pauer, J.B. Prime: An Architectural Trade Capability Using The Ptolemy Ker-
nel. In Proc. of the 1996 IEEE Int. Conf. on Acoustics, Speech, and Signal Pro-
cessing (ICASSP), 1996.

6. K. Lahiri, A. Raghunathan, S. Dey: Performance analysis of systems with multi-
channel communication architectures. In Proc. Int. Conf. VLSI Design, pp. 530-537,
January 2000.



88 Vladimir D. Živković and Paul Lieverse

7. G. Martin, B. Salefski: Methodology and Technology for Design of Communications
and Multimedia Products via System-Level IP Integration. In Proc. of DATE 98,
February 1998.

8. http://www.cadence.com/articles/vcc meth backgrounder.html
9. De Kock et al.: YAPI: Application modeling for signal processing systems. In Pro-

ceedings of DAC’2000, Los Angeles, USA, 2000, June.
10. Jean-Yves Brunel et al.: COSY Communication IP’s. In Proceedings of DAC’2000,

Los Angeles, USA, 2000, June.
11. Arjan van Gemund: Performance Modeling of Parallel Systems. In PhD thesis,

Technische Universiteit Delft, the Netherlands, 1996.
12. F. Balarin, et al.,: Hardware/Software Co-Design Of Embedded Systems - The

POLIS Approach. Kluwer Academic Publishers, 2nd printing, 1999.
13. Synopsys, Inc., CoWare, Inc., Frontier Design, Inc. and others: Functional Specifi-

cation For SystemC 2.0 - Final. January 17th, 2001.
14. D. Verkest, J. Kunkel, F. Schirrmeister: System Level Design Using C++. white

paper, IMEC - Synopsys - Cadence.
15. A.C.J. Kienhuis: Design Space Exploration of Stream-based Dataflow Architec-

tures Methods and Tools. In PhD thesis, Technische Universiteit Delft, the Nether-
lands, 1999.

16. Paul Lieverse, Todor Stefanov, Pieter van der Wolf, Ed Deprettere,: System Level
Design with Spade: an M-JPEG Case Study. In Proc. of Int. Conference on Com-
puter Aided Design (ICCAD’01), San Jose CA, USA, Nov. 4-8, 2001.

17. G. Kahn: The semantics of a simple language for parallel programming. Informa-
tion processing 74 - North-Holland Publishing Company, 1974.

18. B. Kienhuis, E. Deprettere, K. Vissers and P. van der Wolf: An Approach for
Quantitative Analysis of Application-Specific Dataflow Architectures. In Proc. 11-
th Int. Conf. on Application-specific Systems, Architectures and Processors, Zurich,
Switzerland, July 14-16 1997.


	An Overview of Methodologies and Tools in the Field of System-Level Design
	1 Introduction
	2 General Observations
	3 Ptolemy
	4 UC San Diego/NEC Methodology
	5 Polis
	6 VCC -- Virtual Component Co-design
	7 COSY
	8 PAMELA
	9 SystemC
	10 Spade
	11 Conclusion
	Acknowledgements
	References


