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Abstract— The migration of sequential embedded software to 
multicore processors is a challenging task. Parallelization of 
software introduces concurrency bugs (e.g. data races), which only 
conditionally appear during testing because they strongly depend 
on the timing of the execution. Therefore, traditional testing 
approaches cannot efficiently test concurrent software. More 
appropriate are analysis approaches that prove the absence of 
software faults. Current approaches often produce false positives 
as they fail to consider all relevant synchronization sources. In this 
paper, we complement current analysis techniques by considering 
a scheduling scheme as a synchronization mechanism. We narrow 
the analysis by analyzing only relevant variants in execution 
timing that might produce concurrency bugs. Therefore, we 
eliminate a family of false positives caused by ignoring the 
scheduling synchronization. Engineers can optimize this 
scheduling scheme to satisfy different requirements. Our 
approach uses virtual prototyping to enable design space 
exploration of systems with complex scheduling schemes by 
investigating the influence of the scheduling scheme on the 
synchronization of concurrent software. 

Keywords— Data Races; Testing; Concurrency; Scheduling; 
LLVM; FERAL; Virtual Prototyping 

I.  INTRODUCTION 
In concurrent software, concurrent threads operate on shared 

memory. If operations on shared memory are not synchronized 
properly, shared memory may contain invalid data. In order to 
synchronize concurrent threads, developers use synchronization 
mechanisms. Therefore, testing of concurrent software includes 
testing of functional correctness of software, and testing of 
concurrent operations on shared memory. For comparison, when 
testing sequential algorithms, the result of a test case will only 
depend on the inputs and the algorithm under test. When 
triggered with the right input data, a faulty algorithm will always 
yield a failure. Concurrency bugs originate due to 
synchronization faults between concurrent threads, and inputs 
do not determine them. Only a specific interleaving of 
operations on shared memory yield visible failures. Testing 
concurrent software is a hard task, because progress of threads 
determines interleavings of memory operations. Progress of a 
single thread depends on numerous factors, including hard-to-
predict aspects such as cache misses [1]. When several threads 
execute concurrently, it is even harder to predict execution 
progress and consequently interleavings of concurrent threads. 
By excluding specialized solutions, it is fair to say that the 

scheduling of thread interleavings on the majority of computing 
platforms is non-deterministic. Because there are too many 
interleaving alternatives for concurrent software, it is impossible 
to test them all. Therefore, traditional testing is not suitable for 
concurrent software.  

One way to test concurrent software is to complement 
traditional testing with analysis. During software execution, it is 
necessary to collect an execution trace, and to analyze if threads 
synchronize their access to shared memory. An execution trace 
is a description of the dynamic behavior of software, including 
information about access to memory locations and function 
calls. However, developers can use different synchronization 
mechanisms. The most common synchronization mechanisms 
are based on locks (i.e., while one thread operates on a shared 
resource, other threads that currently require the same resource 
wait). Locks activate via function calls. A well known algorithm 
for execution trace analysis, Lockset [2], maintains for each 
variable the set of locks that have protected a shared variable “so 
far” (Candidate Set), and the set of locks at a specific access to 
a variable (Lock Set). The Candidate Set, at the beginning, 
contains all locks that a thread can use. The Lockset adds or 
removes a lock from a Lock Set when a thread acquires or 
releases the lock, respectively. When the algorithm detects an 
access to a shared variable, it updates the Candidate Set by 
intersecting Candidate Set with the current Lock Set of the 
thread. If the result of the intersection is an empty set, no 
common locks protect the variable and therefore it is a potential 
race. The idea behind Lockset is to ensure that at least one 
common lock protects all accesses to the same-shared variable. 
It is possible to synchronize threads only with locks. However, 
the overuse of locking mechanisms has a devastating effect on 
performance, as it leads to serialization. In order to avoid 
serialization, developers can use other synchronization 
mechanisms. In systems that allow customizable scheduling 
schemes, developers can pin certain threads to specific cores, 
configure priorities and create a strict execution order of threads. 
In this way, it is possible to guarantee that certain threads will 
never execute concurrently, and avoid the need for locks. 
Concurrency means that two or more calculations happen within 
the same time frame, with a dependency between them. 
Parallelism means that two or more calculations happen 
simultaneously. In complex systems with many threads, it is 
beneficial to avoid parallel and concurrent execution of threads 
that frequently access to common shared data, by optimizing 
scheduling. Such optimization enables to avoid locks, and 
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consequentially serialization, while retaining proper 
synchronization. However, Lockset algorithm ignores the notion 
of concurrency and does not consider scheduling as 
synchronization mechanism. If Lockset detects threads that 
access to shared memory without common lock, it will report 
concurrency bugs, even in cases when those threads can never 
execute concurrently. Hence, in systems that rely on scheduling 
as synchronization, Lockset will produce a large number of false 
positives.  

Our work targets embedded systems that provide the 
possibility for defining a custom scheduling scheme. To the best 
of our knowledge, there does not exist an approach that relates 
scheduling, synchronization and concurrency bugs. In 
automotive systems, software decomposes to runnables that are 
subject to scheduling. In order to comply with embedded 
terminology, we will refer to threads as software runnables in 
the remainder of this text. Runnables are scheduled by the 
AUTOSAR [19] operating system with fixed priorities. Once 
started, runnables run to completion and can only be preempted 
by higher priority runnables. Runnables are additionally allowed 
to wait upon events and can pass the thread of control to 
runnables with lower priorities. We also consider Linux-based 
embedded systems, as Linux provides functions for pinning 
runnables to cores and assigning priority to runnables [20]. In 
this paper, we present our supervised testing approach, which 
complements existing dynamic analysis approaches, based on 
the Lockset algorithm [2] with scheduling synchronization. We 
execute software in a virtual environment to collect traces and 
analyze the scheduling scheme (Fig. 3). Our approach identifies 
sets of runnables that can never be concurrent because of the 
scheduling scheme. Instead of applying the Lockset algorithm 
on all execution traces, we exclude non-concurrent runnables 
from the analysis. Our paper presents three contributions: 1) an 
approach for inferring non-concurrent runnables from source 
code by executing runnables on virtual prototypes; 2) an 
algorithm for complementing Lockset with scheduling 
synchronization; and, as a consequence, 3) the elimination of 
one family of false positives. Together, our contributions 
provide a tool for exploring the design space in terms of runnable 
scheduling, which assist engineers in evaluating the influence of 
the scheduling scheme on synchronization. Section II discusses 
related work. Section III describes our overall approach and 
notion of mutual concurrency, while Section IV describes 
supervised testing, including platform scheduling in the 
analysis. Section V evaluates our approach and Section VI 
concludes this paper. 

II. RELATED WORK 

A. Static analysis 
Static Analysis (SA) approaches build a model of the target 

software from the source code (e.g. by using abstract 
interpretation of the code [3]). If a part of the software model 
corresponds to the model of the concurrency bug, the SA 
analysis identifies the bug. SA is capable of exposing all bugs in 
a piece of software. Over time, many different SA approaches 
have emerged [5]. The main drawback of SA is a high number 
of false positives, as some statements are statically undecidable 
(e.g., pointer arithmetic, recursive calls). It is often necessary to 

annotate source code in order to reduce the number of false 
positives to an acceptable level. Additionally, checking a large 
piece of software may lead to a state space explosion (a common 
challenge for model checkers [7]), which forces static analysis 
to terminate and to potentially produce more false positives. 
Some approaches tried to tune SA for a specific purpose, but 
even so, SA still produces a significant percentage of false 
positives [9]. Common tools for static code analysis are Astree 
[4] and Polyspace [6]. Polyspace can detect shared variables and 
take task interleavings into account, but reports neither data 
races nor lock/unlock faults. Astree covers all possible 
interleavings, uncovers all data races, and considers the software 
initialization and execution phases. However, Astree employs 
possibly imprecise abstractions of thread priorities and real-time 
scheduling, and assumes arbitrary preemption.  

B. Testing and analysis of execution traces 
A survey from 2014 in the automotive industry shows that 

the participants preferred dynamic testing tools to static analysis 
and formal methods [8]. Dynamic testing approaches for 
concurrent software gather and analyze execution traces. The 
most common algorithms for execution trace analysis are 
Lockset [2] and Happens-before [10]. Tools usually gather 
execution traces by changing the source code, by using code 
instrumentation [11], or by using compiler support (e.g., LLVM 
[12], [21]). The Portend tool [13] classifies data races and 
focuses on the identification of harmful races, but is ignorant of 
features that may make code correctly synchronized on a 
specific platform. The IFRit [15] algorithm monitors 
interference-free regions surrounding a shared variable. IFRit 
performs identification of interference-free regions through 
static analysis and does not consider properties of the target 
platform. ThreadSanitizer [16] uses LLVM for compile time 
instrumentation in order to reduce the slowdown of the target 
software. The authors of ThreadSanitizer increase the 
performance by changing the memory access sampling rate, but 
do not provide an analysis of sampling vs. accuracy. Some 
approaches focus on the anticipation of bugs and on stalling 
problematic threads before they make irreversible changes. The 
Anticipating Invariant [14] technique successfully tolerates 
concurrency bugs related to atomicity and order violation in 
some cases. 

To the best of our knowledge, the previously presented 
analysis algorithms do not consider platform scheduling 
synchronization, and no other approach is offering tools to 
engineers for analyzing the scheduling schemes of complex 
systems in order to reduce the number of used locks. Neglecting 
this type of synchronization leads to false positives – the analysis 
may claim there is a bug in correct code. The Astree tool partially 
tackles this challenge [4], but with possibly imprecise 
abstractions of thread priorities and real-time scheduling. 

III. CONCURRENCY BUG DETECTION 
In order to detect concurrency bugs, in the ideal case, it is 

necessary to collect, resp. identify, the following data about 
software: execution trace, runnables that execute concurrently, 
and synchronization mechanisms between runnables. Finally, it 
is necessary to perform an analysis on the collected data in order 
to identify fail-prone behavior.  
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Reasoning about synchronization and concurrency between 
runnables is a challenging task. The scheduling of software 
runnables can be defined statically, completely dynamically, or 
as a combination in which some rules are imposed a priori (e.g., 
higher-priority tasks can interrupt lower-priority tasks) while 
others are dynamic (e.g., runnables can reallocate to different 
cores). Let us observe an example in Fig. 1. Software runnables 
(R1-R5) access shared memory locations (A-E). With a 
scheduling scheme, it is possible to define the relative execution 
order of runnables, their priorities, and the duration of the 
execution time slots. However, due to the non-determinism of 
multicores, it is hard to determine the time span during which a 
runnable accesses a shared variable. Under the assumption that 
this scheme is guaranteed by the scheduling properties (core 
affinity, strict scheduling), it can be used for synchronization.  

Embedded systems may use numerous strategies for 
runnable scheduling. One of the most common scheduling 
strategies is OSEK conforming scheduling [19] (AUTOSAR is 
OSEK based OS). It is possible to implement OSEK scheduling 
as a preemptive or nonpreemptive strategy. OSEK scheduling 
supports time- and event-triggered runnables with defined 
priorities. Time-triggered runnables activate at specific times. 
Preemptive schedulers preempt running runnables if the newly 
ready runnable has a higher priority than the currently executed 
runnable. Nonpreemptive schedulers wait until the running 
runnable releases the CPU. In addition to time-triggered 
runnables, it is possible to use event-triggered runnables as well. 
The scheduler activates them when a specific event happens. 
This may be an interrupt or a signal from another runnable.  

A. Mutually concurrent runnables 

In this paper, we are limiting our study to data races. For a 
data race to occur, there must exist at least two concurrent 
runnables accessing the same memory location, and at least one 
of the accesses must be for writing. Each runnable requires a 
time slot for its execution. Runnables are concurrent if the order 
of their execution time slots is not sequential. It is not necessary 
for two runnables to execute in parallel in order to create a data 
race. It is enough that due to interrupts and other scheduling 
effects, a second runnable starts execution while the first has not 
yet completed its execution. In complex systems, it is 
challenging to determine concurrent runnables manually. Fig. 2 
illustrates this explanation and shows an example set of 

runnables R1 – R5, with a fixed scheduling scheme. Every 
runnable executes only once within one execution cycle. In Fig. 
2.a, R2 and R3 are concurrent. In Fig. 2.b, R2 and R3 do not 
execute at the same time due to an interrupt in the form of task 
R4. The interrupt runnable R4 and the runnable R3 are obviously 
concurrent. Runnables R3 and R4 start while R2 is not complete 
yet. R3 and R4 can write to memory shared with R2. If these 
runnables do not properly synchronize the access to the shared 
memory, R2 can theoretically operate on outdated data. This 
clearly demonstrates the need to analyze memory operations of 
mutually concurrent runnables during their entire execution 
span, and not only at the times when these runnables overlap 
during one specific test case. A set of mutually concurrent 
runnables is a set where every runnable is concurrent with all 
other runnables from that set. Hence, R2, R3, and R4 are mutually 
concurrent. Lockset only needs to analyze their execution traces 
against each other.  

B. Testing concurrent software in three phases 
We propose splitting concurrent software testing activities 

into three phases (cf. Fig. 3). Phase I produces the execution 
traces by executing the runnables and analyzes the scheduling. 
The input for Phase II are generated tuples of mutually 
concurrent runnables and their execution traces. Sets of 
runnables that are mutually concurrent are passed to Phase II. 
Every Ri(ExecutionTraces) contains a set of execution traces 
gathered by executing the runnable Ri, and i =0, …n, where n is 
the number of runnables. Phase II extracts information relevant 
for synchronization and identifies shared memory between 
concurrent runnables and the synchronization mechanisms used 
by runnables. Phase III applies the Lockset [2] algorithm to the 
execution traces to identify concurrency bugs. With this 
division, we gradually reduce the state space on which Lockset 
works.  

R1 R5 
R2 R4

R3
R2 R4

R3

R1 R5 
R2 R4

R3

b)

a)
R1 ...

R2

...

...

...
R1 
R2

CORE 0
CORE 1

CORE 0

CORE 1  
Fig. 2. a) R2 and R3 are concurrent. b) R2 and R3 do not execute at the same 

time, but are technically concurrent. 
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Fig. 3. Detection of concurrency faults in three phases 
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Fig. 1. Complex synchronization scheme, runnables (R1-R5) accessing 

shared variables (A, B, C, D, E) 
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C. Scheduling: a synchronization mechanism 
We define a finite set of runnables R (1) and a finite set of 

Mutually Concurrent runnables MC (2) containing tuples; tuple 
elements represent mutually concurrent runnables according to 
the scheduling scheme. Runnables are mutually concurrent and 
belong to the same tuple, if and only if each runnable from the 
tuple is concurrent with all other runnables from the same tuple. 
Two runnables are concurrent if their execution time span 
overlaps for at least one instruction (Section III, Fig. 2). If we do 
not consider scheduling or core affinity as synchronization 
mechanisms, there are no concurrency limitations and all 
runnables from R are mutually concurrent (3). 

R = {R1, R2, …, Rn};             (1) 
(where n is the number of runnables) 
MC = {MC1, MC2, …., MCr}; and MCh ⊆ R           (2) 
(for each h, where h=1, …r)   
MC1 = R and MC = {MC1}            (3) 

In order to evaluate the influence of a specific scheduling on 
concurrency, it is necessary to analyze each scheduling property. 
It is possible to represent each Scheduling Property (SP) with a 
set of rules with which the property influences the execution of 
runnables. The analysis component of each SP applies its set of 
rules to the set of all runnables R and produces the set SPg, which 
contains tuples of mutually concurrent runnables that are 
mutually concurrent according to the rules of the gth scheduling 
property. It is necessary to apply the rules of every scheduling 
property to the set of runnables R. The result of this analysis is 
the set of Concurrency Limitations CL = {SP1(R), SP2(R), 
…SPs(R)} where elements of SPi(R) are tuples of runnables that 
are mutually concurrent considering the ith scheduling property. 
Runnables that are not part of any tuple in SPi(R) cannot be 
concurrent according to the ith scheduling property. To calculate 
the final sets of mutually concurrent runnables in the system, it 
is necessary to intersect all SPi. By intersecting all SPi, we 
produce sets of runnables that are mutually concurrent according 
to all considered scheduling properties. 

We illustrate the scheduling analysis with an example. An 
arbitrary system with static scheduling (Fig. 4) has an initial set 
of runnables (4). The system assigns priorities to runnables. 
Preemption is disabled and every runnable has a dedicated time 
slot. The assumption is that runnables never exceed their time 
slots, and they are pinned to cores. Due to these properties, the 
scheduling scheme remains fixed in every execution cycle (Fig. 
4). Scheduling properties – static priority policy with disabled 

preemption (SP1), and core affinity with disabled preemption 
(SP2) – limit concurrency (5) (6). According to the scheduling 
properties, software runnables are pinned to cores (Table 1) and 
have priorities (Table 2). The scheduling analysis takes runnable 
priorities as rules of concurrency of the first scheduling property 
SP1 and applies them to the set of runnables R. The result are 
tuples of mutually concurrent runnables (7). A simple 
formulation summarizes the logic behind the second scheduling 
property (SP2). Any element ri of a set of runnables from R 
pinned to a specific core can never be concurrent with any other 
runnable rk from the same set (where k is the dimension of the 
set R, and i ≠ k), under the assumption that preemption is 
disabled. Only runnables pinned to different cores can be 
concurrent (under the “no preemption” assumption). 
Mathematically, we express this formulation as a Cartesian 
product between runnables pinned to core 1 and core 2. Each 
runnable fixed to the first core is concurrent with every runnable 
on the second core (8). In order to identify mutually concurrent 
runnables (threads) according to both scheduling properties (5), 
we correlate elements of Concurrency Limitations (CL). The 
result are tuples that contain Mutually Concurrent runnables 
(MC) (9). 

R = {R1, R2, R3, R4, R5, R6, R7, R8, R9}            (4) 
CL = {SP1, SP2}              (5) 
CL = {static priority, core affinity}                    (6) 
SP1(R) = {[R2, R6, R7], [R3, R8, R9]}           (7) 
SP2(R) = {[R1, R6], [R1, R7], [R1, R8], [R1, R9], [R2, R6], 
 [R2, R7], [R2, R8], [R2, R9], [R3, R6], [R3, R7], [R3, R8], 
 [R3, R9], [R4, R6], [R4, R7], [R4, R8], [R4, R9], [R5, R6], 
 [R5, R7], [R5, R8], [R5, R9]}                             (8) 
MC= {[R2, R6], [R2, R7], [R3, R8], [R3, R9]}                      (9) 

IV. SUPERVISED TESTING 
In our approach, we collect execution traces by sequentially 

executing unmodified runnables in a common memory space. 
We achieve this by using the LLVM compiler infrastructure [12]. 
The LLVM front end translates source code into a byte code 
called Intermediate Representation (IR). We use the LLVM 
interpreter to execute the IR. We have modified the LLVM 
interpreter to observe and record the internal state of software 
runnables – and relate executed instruction to the source code. 
For the concurrency analysis, what is important are memory 
manipulation instructions and function calls. The memory 
manipulation, store, and load instructions mark accesses to 
potentially shared memory. Locking mechanisms operate using 
function calls. Common functions for scheduling, affinity, and 
priority manipulation use built-in (Linux) system functions (e.g. 
sched_setscheduler()). 

A. Building an execution trace 
We execute software runnables under the control of the 

FERAL framework (Fast Evaluation on Requirements and 
Architecture Level) [17] for two reasons: FERAL simulates 
necessary runtime and platform components like CAN 
communication, and simulates the task scheduler that controls 
the execution of runnables. FERAL supports several task 
schedulers appropriate for creating realistic platform simulation 
models on the scheduling level. Fig. 5 illustrates the coupling 
between FERAL and LLVM. FERAL loads the LLVM 

EXECUTION SCHEME

R1
R6

R2
R7 R9R8

R3 R4 R5 R1
R6

R2
R7 R9R8

R3 R4 R5 ...CORE 0
CORE 1

 
Fig. 4. Execution cycles, runnables on two cores 

 

TABLE 2: EXAMPLE: RUNNABLES AND THEIR PRIORITIES. 

Priority I II III IV V 
Runnable R1 R2, R6, R7 R3, R8, R9 R4 R5 

 

TABLE 1: EXAMPLE: ASSIGN RUNNABLES EXCLUSIVELY TO CORES 

Core I II 
Runnables R1, R2, R3 R4, R5 R6, R7, R8, R9 
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Intermediate representation, creates communication ports, and 
controls the progress of the execution. Communication ports is 
a term used to describe a mechanism we created to execute 
software on a virtual prototype. The idea behind these ports is to 
intercept unimplemented or system functions and provide 
arbitrary results. We are also able to intercept access to global 
variables holding values of sensor components, and change their 
value according to specific needs. Before the execution, it is 
enough to specify the names of the global variables or functions 
we want to intercept. These functions and variables become 
ports. When the LLVM interpreter accesses a port, the port 
callback function activates and contacts FERAL. In FERAL, we 
start the desired procedure to return an arbitrary value to LLVM, 
or to perform any other operation. This process enables us to 
execute software, including operating system functions, on a 
virtual prototype without a full system stack. The LLVM 
backend communicates with FERAL via the callback functions 
in order to report to FERAL all functions and their blocks from 
IR to FERAL as well as details of the executed instructions 
(instruction type, memory address accessed, additional 
parameters such as variable name, and the line number of an 
instruction in the source code). FERAL executes the runnables 
to observe the software’s dynamic behavior. All runnables 
deployed to one memory domain (i.e., one LLVM instance) share 
a common memory space. We identify access to shared variables 
by analyzing the access to the memory addresses. The FERAL 
platform simulation can trigger the execution of runnables 
multiple times and with an arbitrary schedule. FERAL can also 
mock up unimplemented functions and values of shared 
variables through the previously mentioned port mechanism. 
The results of executions are execution traces, which contain 
consecutive sets of instruction details, organized into execution 
cycles. 

B. Inferring mutually concurrent runnables 
It is possible to implement the scheduling scheme of 

embedded software in various ways. We focus on two 
implementation types. The first case is that of POSIX-based 
systems. Linux provides functions for assigning priorities, 
scheduling policies, and pinning runnables to cores. Typically, 
one runnable is responsible for creating other software 
runnables, assigning affinities and priorities, and defining an 
overall scheduling scheme. In other implementations, each 
runnable contains, at the beginning of its execution, a part of the 
code for self-assigning a priority in the scheduling scheme. The 
scheduling scheme remains static after the initiation of all 
software runnables. Linux provides a wide range of system 
functions for controlling scheduling (e.g., sched()), affinity (e.g., 
sched_setaffinity()), and various real-time scheduling policies, 
for special time-critical applications that need precise control 
over the runnables (e.g., FIFO, Round-Robin) [20]. With these 
functions, it is possible to define a precise scheduling scheme 
and even to redirect IRQ to specific cores. As we will explain in 
section IV.A, with our approach, we are able to intercept any 

function call and handle it arbitrarily – to decide to execute it or 
to simply skip its execution, providing the desired return result. 
The execution traces that our approach collects contain function 
calls. For desired functions, we are also able to extract function 
parameters. Hence, with such rich execution traces, we are able 
to relate scheduling system functions and the respective 
runnables in order to extract the scheduling scheme that the 
developers implemented. It is only necessary to execute all 
software runnables once. The assumption that the scheduling 
scheme is static and determined at the beginning of the execution 
guarantees that, once identified, the scheduling scheme will not 
change. In the second case, we consider AUTOSAR 
(AUTomotive Open Systems ARchitecture). The entire 
AUTOSAR configuration is static and contains runnable 
attributes (priorities, triggers for event-triggered runnables, 
periods for time-triggered tasks, etc.). For each runnable, 
AUTOSAR generates a deployment configuration OIL (OSEK 
Implementation Language) file. We implement a parser for OIL 
files and reconstruct the scheduling scheme of runnables. For 
design space exploration, we leave an option in our approach to 
specify the scheduling scheme manually.  

C. Identification of unnecessary locks 
Locking mechanisms are computationally expensive 

operations and have a negative effect on parallelism. Besides 
standard locking errors, we are able to detect unnecessary use of 
locks. This is an important hint to developers in terms of 
software maintainability. It is a common case that due to some 
changes, a previously shared variable becomes accessible by 
only a single runnable, or a group of non-concurrent runnables. 
Developers might forget to remove synchronization at some 
point. Our approach can detect such cases.  

V. EVALUATION OF THE APPROACH 

In order to evaluate our approach, we used an industry-like 
example of a Cruise Control software [18]. The Cruise Control 
software consists of functions that communicate over shared 
data structures. We parallelized functions of this software into 
individual runnables and introduced additional shared variables 
(Fig. 6). In R2 and R7, we synchronize, with locks, the accesses 
to _C_SYSTEM_GLOBAL. In R3 and R9, we synchronize, with 
locks, the accesses to _D_SYSTEM_GLOBAL. We introduce 
data races in R6, with some partially synchronized accesses to 
_B_SYSTEM_GLOBAL, and to R2, with some partially 
synchronized accesses to _D_SYSTEM_GLOBAL and 
_E_SYSTEM_GLOBAL. Other accesses to introduced variables 
are unsynchronized. We executed parallelized software on our 
LLVM and FERAL infrastructure, and performed an analysis on 
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SYSTEM_GL

OBAL

A B C D E

R1[initAll]

R6[Crui
seSpee
dMgt]

R2[Saturate
Throttle]

R7[Crui
seState

Mgt]

R9[Cruise
Control]

R8[Dete
ctSpeedL

imits]

R3[Throttle
Regulation]

R4[Throttl
eCmd]

R5[DetectPe
dalsPressed]

A B E A B C A C DB D E

 

Fig. 6: Access to shared _SYSTEM_GLOBAL(_A_, _B_, _C_, _D_,  _E_) 
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Fig. 5: Supervised testing concept 
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the execution trace. Our analysis provided a report on which 
variables and memory locations our runnables are accessing and 
with which frequency. Based on the analysis report, we designed 
a static scheduling scheme to separate the runnables with the 
highest frequency accesses to the shared variables (Fig. 6). We 
repeated the analysis of the execution, considering the 
scheduling scheme as a synchronization mechanism. When 
considering scheduling, our analysis identified a lower number 
of accesses to shared variables and data races (Table 3). This is 
due to the fact that the second analysis considered only the 
execution traces of mutually concurrent runnables. If the 
analysis does not consider synchronization in software that relies 
on scheduling as a synchronization mechanism, the outcome of 
the analysis will contain a large number of false positives. 

VI. CONCLUSION, DISCUSSION AND FUTURE WORK 
Our approach detects shared variables between runnables, 

data races, and frequency with which runnables are accessing to 
shared memory. These data is useful for design space 
exploration in terms of organizing a scheduling scheme to 
improve the efficiency of concurrent software. With the 
experiment setup and the results, we demonstrate how to relate 
scheduling with synchronization between runnables and 
concurrency bugs. This enables rapid prototyping of scheduling 
schemes and evaluation of their influence on software 
concurrency aspects. We are also able to detect cases of 
unnecessary use of locks (e.g., locking runnables do not execute 
concurrently). We have implemented code coverage analysis 
alongside our testing approach to quantify the percentage of 
tested code and to generate test cases. These results will be the 
subject of future publications.  

Our approach is applicable only in systems that rely on a 
customized scheduling scheme. The assumption is that system 
engineers already guarantee the timing properties. In the future, 
we plan to expand our approach and include other types of 
concurrency bugs and synchronization mechanisms. We will 
evaluate our approach on real-world software and compare it 
with existing tools in order to reason about its efficiency and 
precision. 
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TABLE 3: THE NUMBER OF ACCESSES TO SHARED VARIABLES AND  DATA 
RACES. INCLUSION OF SCHEDULING IN CONCURRENCY BUGS ANALYSIS 
ELIMINATES ONE SOURCE OF FALSE POSITIVES. 

Analysis Accesses to shared 
variables 

Data races 

Without scheduling 168 136 
With scheduling  8 6 
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