
Supervised Testing of Concurrent Software in
Embedded Systems

Jasmin Jahić, Thomas Kuhn, Matthias Jung
Embedded Software Engineering

Fraunhofer IESE
Kaiserslautern, Germany

firstname.lastname@fraunhofer.iese.de

Norbert Wehn
Microelectronic Systems Design Research Group

University of Kaiserslautern, Germany
wehn@eit.uni-kl.de

Abstract— The migration of sequential embedded software to
multicore processors is a challenging task. Parallelization of
software introduces concurrency bugs (e.g. data races), which only
conditionally appear during testing because they strongly depend
on the timing of the execution. Therefore, traditional testing
approaches cannot efficiently test concurrent software. More
appropriate are analysis approaches that prove the absence of
software faults. Current approaches often produce false positives
as they fail to consider all relevant synchronization sources. In this
paper, we complement current analysis techniques by considering
a scheduling scheme as a synchronization mechanism. We narrow
the analysis by analyzing only relevant variants in execution
timing that might produce concurrency bugs. Therefore, we
eliminate a family of false positives caused by ignoring the
scheduling synchronization. Engineers can optimize this
scheduling scheme to satisfy different requirements. Our
approach uses virtual prototyping to enable design space
exploration of systems with complex scheduling schemes by
investigating the influence of the scheduling scheme on the
synchronization of concurrent software.

Keywords— Data Races; Testing; Concurrency; Scheduling;
LLVM; FERAL; Virtual Prototyping

I. INTRODUCTION
In concurrent software, concurrent threads operate on shared

memory. If operations on shared memory are not synchronized
properly, shared memory may contain invalid data. In order to
synchronize concurrent threads, developers use synchronization
mechanisms. Therefore, testing of concurrent software includes
testing of functional correctness of software, and testing of
concurrent operations on shared memory. For comparison, when
testing sequential algorithms, the result of a test case will only
depend on the inputs and the algorithm under test. When
triggered with the right input data, a faulty algorithm will always
yield a failure. Concurrency bugs originate due to
synchronization faults between concurrent threads, and inputs
do not determine them. Only a specific interleaving of
operations on shared memory yield visible failures. Testing
concurrent software is a hard task, because progress of threads
determines interleavings of memory operations. Progress of a
single thread depends on numerous factors, including hard-to-
predict aspects such as cache misses [1]. When several threads
execute concurrently, it is even harder to predict execution
progress and consequently interleavings of concurrent threads.
By excluding specialized solutions, it is fair to say that the

scheduling of thread interleavings on the majority of computing
platforms is non-deterministic. Because there are too many
interleaving alternatives for concurrent software, it is impossible
to test them all. Therefore, traditional testing is not suitable for
concurrent software.

One way to test concurrent software is to complement
traditional testing with analysis. During software execution, it is
necessary to collect an execution trace, and to analyze if threads
synchronize their access to shared memory. An execution trace
is a description of the dynamic behavior of software, including
information about access to memory locations and function
calls. However, developers can use different synchronization
mechanisms. The most common synchronization mechanisms
are based on locks (i.e., while one thread operates on a shared
resource, other threads that currently require the same resource
wait). Locks activate via function calls. A well known algorithm
for execution trace analysis, Lockset [2], maintains for each
variable the set of locks that have protected a shared variable “so
far” (Candidate Set), and the set of locks at a specific access to
a variable (Lock Set). The Candidate Set, at the beginning,
contains all locks that a thread can use. The Lockset adds or
removes a lock from a Lock Set when a thread acquires or
releases the lock, respectively. When the algorithm detects an
access to a shared variable, it updates the Candidate Set by
intersecting Candidate Set with the current Lock Set of the
thread. If the result of the intersection is an empty set, no
common locks protect the variable and therefore it is a potential
race. The idea behind Lockset is to ensure that at least one
common lock protects all accesses to the same-shared variable.
It is possible to synchronize threads only with locks. However,
the overuse of locking mechanisms has a devastating effect on
performance, as it leads to serialization. In order to avoid
serialization, developers can use other synchronization
mechanisms. In systems that allow customizable scheduling
schemes, developers can pin certain threads to specific cores,
configure priorities and create a strict execution order of threads.
In this way, it is possible to guarantee that certain threads will
never execute concurrently, and avoid the need for locks.
Concurrency means that two or more calculations happen within
the same time frame, with a dependency between them.
Parallelism means that two or more calculations happen
simultaneously. In complex systems with many threads, it is
beneficial to avoid parallel and concurrent execution of threads
that frequently access to common shared data, by optimizing
scheduling. Such optimization enables to avoid locks, and

978-1-5386-3437-0/17/$31.00 ©2017 IEEE978-1-5386-3437-0/17/$31.00 ©2017 IEEE 233

consequentially serialization, while retaining proper
synchronization. However, Lockset algorithm ignores the notion
of concurrency and does not consider scheduling as
synchronization mechanism. If Lockset detects threads that
access to shared memory without common lock, it will report
concurrency bugs, even in cases when those threads can never
execute concurrently. Hence, in systems that rely on scheduling
as synchronization, Lockset will produce a large number of false
positives.

Our work targets embedded systems that provide the
possibility for defining a custom scheduling scheme. To the best
of our knowledge, there does not exist an approach that relates
scheduling, synchronization and concurrency bugs. In
automotive systems, software decomposes to runnables that are
subject to scheduling. In order to comply with embedded
terminology, we will refer to threads as software runnables in
the remainder of this text. Runnables are scheduled by the
AUTOSAR [19] operating system with fixed priorities. Once
started, runnables run to completion and can only be preempted
by higher priority runnables. Runnables are additionally allowed
to wait upon events and can pass the thread of control to
runnables with lower priorities. We also consider Linux-based
embedded systems, as Linux provides functions for pinning
runnables to cores and assigning priority to runnables [20]. In
this paper, we present our supervised testing approach, which
complements existing dynamic analysis approaches, based on
the Lockset algorithm [2] with scheduling synchronization. We
execute software in a virtual environment to collect traces and
analyze the scheduling scheme (Fig. 3). Our approach identifies
sets of runnables that can never be concurrent because of the
scheduling scheme. Instead of applying the Lockset algorithm
on all execution traces, we exclude non-concurrent runnables
from the analysis. Our paper presents three contributions: 1) an
approach for inferring non-concurrent runnables from source
code by executing runnables on virtual prototypes; 2) an
algorithm for complementing Lockset with scheduling
synchronization; and, as a consequence, 3) the elimination of
one family of false positives. Together, our contributions
provide a tool for exploring the design space in terms of runnable
scheduling, which assist engineers in evaluating the influence of
the scheduling scheme on synchronization. Section II discusses
related work. Section III describes our overall approach and
notion of mutual concurrency, while Section IV describes
supervised testing, including platform scheduling in the
analysis. Section V evaluates our approach and Section VI
concludes this paper.

II. RELATED WORK

A. Static analysis
Static Analysis (SA) approaches build a model of the target

software from the source code (e.g. by using abstract
interpretation of the code [3]). If a part of the software model
corresponds to the model of the concurrency bug, the SA
analysis identifies the bug. SA is capable of exposing all bugs in
a piece of software. Over time, many different SA approaches
have emerged [5]. The main drawback of SA is a high number
of false positives, as some statements are statically undecidable
(e.g., pointer arithmetic, recursive calls). It is often necessary to

annotate source code in order to reduce the number of false
positives to an acceptable level. Additionally, checking a large
piece of software may lead to a state space explosion (a common
challenge for model checkers [7]), which forces static analysis
to terminate and to potentially produce more false positives.
Some approaches tried to tune SA for a specific purpose, but
even so, SA still produces a significant percentage of false
positives [9]. Common tools for static code analysis are Astree
[4] and Polyspace [6]. Polyspace can detect shared variables and
take task interleavings into account, but reports neither data
races nor lock/unlock faults. Astree covers all possible
interleavings, uncovers all data races, and considers the software
initialization and execution phases. However, Astree employs
possibly imprecise abstractions of thread priorities and real-time
scheduling, and assumes arbitrary preemption.

B. Testing and analysis of execution traces
A survey from 2014 in the automotive industry shows that

the participants preferred dynamic testing tools to static analysis
and formal methods [8]. Dynamic testing approaches for
concurrent software gather and analyze execution traces. The
most common algorithms for execution trace analysis are
Lockset [2] and Happens-before [10]. Tools usually gather
execution traces by changing the source code, by using code
instrumentation [11], or by using compiler support (e.g., LLVM
[12], [21]). The Portend tool [13] classifies data races and
focuses on the identification of harmful races, but is ignorant of
features that may make code correctly synchronized on a
specific platform. The IFRit [15] algorithm monitors
interference-free regions surrounding a shared variable. IFRit
performs identification of interference-free regions through
static analysis and does not consider properties of the target
platform. ThreadSanitizer [16] uses LLVM for compile time
instrumentation in order to reduce the slowdown of the target
software. The authors of ThreadSanitizer increase the
performance by changing the memory access sampling rate, but
do not provide an analysis of sampling vs. accuracy. Some
approaches focus on the anticipation of bugs and on stalling
problematic threads before they make irreversible changes. The
Anticipating Invariant [14] technique successfully tolerates
concurrency bugs related to atomicity and order violation in
some cases.

To the best of our knowledge, the previously presented
analysis algorithms do not consider platform scheduling
synchronization, and no other approach is offering tools to
engineers for analyzing the scheduling schemes of complex
systems in order to reduce the number of used locks. Neglecting
this type of synchronization leads to false positives – the analysis
may claim there is a bug in correct code. The Astree tool partially
tackles this challenge [4], but with possibly imprecise
abstractions of thread priorities and real-time scheduling.

III. CONCURRENCY BUG DETECTION
In order to detect concurrency bugs, in the ideal case, it is

necessary to collect, resp. identify, the following data about
software: execution trace, runnables that execute concurrently,
and synchronization mechanisms between runnables. Finally, it
is necessary to perform an analysis on the collected data in order
to identify fail-prone behavior.

234

Reasoning about synchronization and concurrency between
runnables is a challenging task. The scheduling of software
runnables can be defined statically, completely dynamically, or
as a combination in which some rules are imposed a priori (e.g.,
higher-priority tasks can interrupt lower-priority tasks) while
others are dynamic (e.g., runnables can reallocate to different
cores). Let us observe an example in Fig. 1. Software runnables
(R1-R5) access shared memory locations (A-E). With a
scheduling scheme, it is possible to define the relative execution
order of runnables, their priorities, and the duration of the
execution time slots. However, due to the non-determinism of
multicores, it is hard to determine the time span during which a
runnable accesses a shared variable. Under the assumption that
this scheme is guaranteed by the scheduling properties (core
affinity, strict scheduling), it can be used for synchronization.

Embedded systems may use numerous strategies for
runnable scheduling. One of the most common scheduling
strategies is OSEK conforming scheduling [19] (AUTOSAR is
OSEK based OS). It is possible to implement OSEK scheduling
as a preemptive or nonpreemptive strategy. OSEK scheduling
supports time- and event-triggered runnables with defined
priorities. Time-triggered runnables activate at specific times.
Preemptive schedulers preempt running runnables if the newly
ready runnable has a higher priority than the currently executed
runnable. Nonpreemptive schedulers wait until the running
runnable releases the CPU. In addition to time-triggered
runnables, it is possible to use event-triggered runnables as well.
The scheduler activates them when a specific event happens.
This may be an interrupt or a signal from another runnable.

A. Mutually concurrent runnables

In this paper, we are limiting our study to data races. For a
data race to occur, there must exist at least two concurrent
runnables accessing the same memory location, and at least one
of the accesses must be for writing. Each runnable requires a
time slot for its execution. Runnables are concurrent if the order
of their execution time slots is not sequential. It is not necessary
for two runnables to execute in parallel in order to create a data
race. It is enough that due to interrupts and other scheduling
effects, a second runnable starts execution while the first has not
yet completed its execution. In complex systems, it is
challenging to determine concurrent runnables manually. Fig. 2
illustrates this explanation and shows an example set of

runnables R1 – R5, with a fixed scheduling scheme. Every
runnable executes only once within one execution cycle. In Fig.
2.a, R2 and R3 are concurrent. In Fig. 2.b, R2 and R3 do not
execute at the same time due to an interrupt in the form of task
R4. The interrupt runnable R4 and the runnable R3 are obviously
concurrent. Runnables R3 and R4 start while R2 is not complete
yet. R3 and R4 can write to memory shared with R2. If these
runnables do not properly synchronize the access to the shared
memory, R2 can theoretically operate on outdated data. This
clearly demonstrates the need to analyze memory operations of
mutually concurrent runnables during their entire execution
span, and not only at the times when these runnables overlap
during one specific test case. A set of mutually concurrent
runnables is a set where every runnable is concurrent with all
other runnables from that set. Hence, R2, R3, and R4 are mutually
concurrent. Lockset only needs to analyze their execution traces
against each other.

B. Testing concurrent software in three phases
We propose splitting concurrent software testing activities

into three phases (cf. Fig. 3). Phase I produces the execution
traces by executing the runnables and analyzes the scheduling.
The input for Phase II are generated tuples of mutually
concurrent runnables and their execution traces. Sets of
runnables that are mutually concurrent are passed to Phase II.
Every Ri(ExecutionTraces) contains a set of execution traces
gathered by executing the runnable Ri, and i =0, …n, where n is
the number of runnables. Phase II extracts information relevant
for synchronization and identifies shared memory between
concurrent runnables and the synchronization mechanisms used
by runnables. Phase III applies the Lockset [2] algorithm to the
execution traces to identify concurrency bugs. With this
division, we gradually reduce the state space on which Lockset
works.

R1 R5
R2 R4

R3
R2 R4

R3

R1 R5
R2 R4

R3

b)

a)
R1 ...

R2

...

...

...
R1
R2

CORE 0
CORE 1

CORE 0

CORE 1
Fig. 2. a) R2 and R3 are concurrent. b) R2 and R3 do not execute at the same

time, but are technically concurrent.

 EMBEDDED SYSTEM
AND SOFTWARE ANALYSIS

CONCURRENCY BUGS
ANALYSIS

Software Behavior Map

Multicore platform Software
R = {R1, R2, ...}

Execute software in a virtual environment

Mutually
concurrent
runnables

Execution trace

Analysis – Concurrency bugs

Scheduling Record tracesEnvironment
(e.g. sensors)

I

II

III

Sets of Mutually
Concurrent Runnables

Execution Traces of
Runnables (R1, R2)

Execution Traces, Shared Memory and Synchronization
Mechanisms of Mutually Concurrent Runnables

Fig. 3. Detection of concurrency faults in three phases

R1 R5

R2 R4

R3

R2 R4

R3

A B D B E C A DB ED

CORE 0

CORE 1
Fig. 1. Complex synchronization scheme, runnables (R1-R5) accessing

shared variables (A, B, C, D, E)

235

C. Scheduling: a synchronization mechanism
We define a finite set of runnables R (1) and a finite set of

Mutually Concurrent runnables MC (2) containing tuples; tuple
elements represent mutually concurrent runnables according to
the scheduling scheme. Runnables are mutually concurrent and
belong to the same tuple, if and only if each runnable from the
tuple is concurrent with all other runnables from the same tuple.
Two runnables are concurrent if their execution time span
overlaps for at least one instruction (Section III, Fig. 2). If we do
not consider scheduling or core affinity as synchronization
mechanisms, there are no concurrency limitations and all
runnables from R are mutually concurrent (3).

R = {R1, R2, …, Rn}; (1)
(where n is the number of runnables)
MC = {MC1, MC2, …., MCr}; and MCh ⊆ R (2)
(for each h, where h=1, …r)
MC1 = R and MC = {MC1} (3)

In order to evaluate the influence of a specific scheduling on
concurrency, it is necessary to analyze each scheduling property.
It is possible to represent each Scheduling Property (SP) with a
set of rules with which the property influences the execution of
runnables. The analysis component of each SP applies its set of
rules to the set of all runnables R and produces the set SPg, which
contains tuples of mutually concurrent runnables that are
mutually concurrent according to the rules of the gth scheduling
property. It is necessary to apply the rules of every scheduling
property to the set of runnables R. The result of this analysis is
the set of Concurrency Limitations CL = {SP1(R), SP2(R),
…SPs(R)} where elements of SPi(R) are tuples of runnables that
are mutually concurrent considering the ith scheduling property.
Runnables that are not part of any tuple in SPi(R) cannot be
concurrent according to the ith scheduling property. To calculate
the final sets of mutually concurrent runnables in the system, it
is necessary to intersect all SPi. By intersecting all SPi, we
produce sets of runnables that are mutually concurrent according
to all considered scheduling properties.

We illustrate the scheduling analysis with an example. An
arbitrary system with static scheduling (Fig. 4) has an initial set
of runnables (4). The system assigns priorities to runnables.
Preemption is disabled and every runnable has a dedicated time
slot. The assumption is that runnables never exceed their time
slots, and they are pinned to cores. Due to these properties, the
scheduling scheme remains fixed in every execution cycle (Fig.
4). Scheduling properties – static priority policy with disabled

preemption (SP1), and core affinity with disabled preemption
(SP2) – limit concurrency (5) (6). According to the scheduling
properties, software runnables are pinned to cores (Table 1) and
have priorities (Table 2). The scheduling analysis takes runnable
priorities as rules of concurrency of the first scheduling property
SP1 and applies them to the set of runnables R. The result are
tuples of mutually concurrent runnables (7). A simple
formulation summarizes the logic behind the second scheduling
property (SP2). Any element ri of a set of runnables from R
pinned to a specific core can never be concurrent with any other
runnable rk from the same set (where k is the dimension of the
set R, and i ≠ k), under the assumption that preemption is
disabled. Only runnables pinned to different cores can be
concurrent (under the “no preemption” assumption).
Mathematically, we express this formulation as a Cartesian
product between runnables pinned to core 1 and core 2. Each
runnable fixed to the first core is concurrent with every runnable
on the second core (8). In order to identify mutually concurrent
runnables (threads) according to both scheduling properties (5),
we correlate elements of Concurrency Limitations (CL). The
result are tuples that contain Mutually Concurrent runnables
(MC) (9).

R = {R1, R2, R3, R4, R5, R6, R7, R8, R9} (4)
CL = {SP1, SP2} (5)
CL = {static priority, core affinity} (6)
SP1(R) = {[R2, R6, R7], [R3, R8, R9]} (7)
SP2(R) = {[R1, R6], [R1, R7], [R1, R8], [R1, R9], [R2, R6],
 [R2, R7], [R2, R8], [R2, R9], [R3, R6], [R3, R7], [R3, R8],
 [R3, R9], [R4, R6], [R4, R7], [R4, R8], [R4, R9], [R5, R6],
 [R5, R7], [R5, R8], [R5, R9]} (8)
MC= {[R2, R6], [R2, R7], [R3, R8], [R3, R9]} (9)

IV. SUPERVISED TESTING
In our approach, we collect execution traces by sequentially

executing unmodified runnables in a common memory space.
We achieve this by using the LLVM compiler infrastructure [12].
The LLVM front end translates source code into a byte code
called Intermediate Representation (IR). We use the LLVM
interpreter to execute the IR. We have modified the LLVM
interpreter to observe and record the internal state of software
runnables – and relate executed instruction to the source code.
For the concurrency analysis, what is important are memory
manipulation instructions and function calls. The memory
manipulation, store, and load instructions mark accesses to
potentially shared memory. Locking mechanisms operate using
function calls. Common functions for scheduling, affinity, and
priority manipulation use built-in (Linux) system functions (e.g.
sched_setscheduler()).

A. Building an execution trace
We execute software runnables under the control of the

FERAL framework (Fast Evaluation on Requirements and
Architecture Level) [17] for two reasons: FERAL simulates
necessary runtime and platform components like CAN
communication, and simulates the task scheduler that controls
the execution of runnables. FERAL supports several task
schedulers appropriate for creating realistic platform simulation
models on the scheduling level. Fig. 5 illustrates the coupling
between FERAL and LLVM. FERAL loads the LLVM

EXECUTION SCHEME

R1
R6

R2
R7 R9R8

R3 R4 R5 R1
R6

R2
R7 R9R8

R3 R4 R5 ...CORE 0
CORE 1

Fig. 4. Execution cycles, runnables on two cores

TABLE 2: EXAMPLE: RUNNABLES AND THEIR PRIORITIES.

Priority I II III IV V
Runnable R1 R2, R6, R7 R3, R8, R9 R4 R5

TABLE 1: EXAMPLE: ASSIGN RUNNABLES EXCLUSIVELY TO CORES

Core I II
Runnables R1, R2, R3 R4, R5 R6, R7, R8, R9

236

Intermediate representation, creates communication ports, and
controls the progress of the execution. Communication ports is
a term used to describe a mechanism we created to execute
software on a virtual prototype. The idea behind these ports is to
intercept unimplemented or system functions and provide
arbitrary results. We are also able to intercept access to global
variables holding values of sensor components, and change their
value according to specific needs. Before the execution, it is
enough to specify the names of the global variables or functions
we want to intercept. These functions and variables become
ports. When the LLVM interpreter accesses a port, the port
callback function activates and contacts FERAL. In FERAL, we
start the desired procedure to return an arbitrary value to LLVM,
or to perform any other operation. This process enables us to
execute software, including operating system functions, on a
virtual prototype without a full system stack. The LLVM
backend communicates with FERAL via the callback functions
in order to report to FERAL all functions and their blocks from
IR to FERAL as well as details of the executed instructions
(instruction type, memory address accessed, additional
parameters such as variable name, and the line number of an
instruction in the source code). FERAL executes the runnables
to observe the software’s dynamic behavior. All runnables
deployed to one memory domain (i.e., one LLVM instance) share
a common memory space. We identify access to shared variables
by analyzing the access to the memory addresses. The FERAL
platform simulation can trigger the execution of runnables
multiple times and with an arbitrary schedule. FERAL can also
mock up unimplemented functions and values of shared
variables through the previously mentioned port mechanism.
The results of executions are execution traces, which contain
consecutive sets of instruction details, organized into execution
cycles.

B. Inferring mutually concurrent runnables
It is possible to implement the scheduling scheme of

embedded software in various ways. We focus on two
implementation types. The first case is that of POSIX-based
systems. Linux provides functions for assigning priorities,
scheduling policies, and pinning runnables to cores. Typically,
one runnable is responsible for creating other software
runnables, assigning affinities and priorities, and defining an
overall scheduling scheme. In other implementations, each
runnable contains, at the beginning of its execution, a part of the
code for self-assigning a priority in the scheduling scheme. The
scheduling scheme remains static after the initiation of all
software runnables. Linux provides a wide range of system
functions for controlling scheduling (e.g., sched()), affinity (e.g.,
sched_setaffinity()), and various real-time scheduling policies,
for special time-critical applications that need precise control
over the runnables (e.g., FIFO, Round-Robin) [20]. With these
functions, it is possible to define a precise scheduling scheme
and even to redirect IRQ to specific cores. As we will explain in
section IV.A, with our approach, we are able to intercept any

function call and handle it arbitrarily – to decide to execute it or
to simply skip its execution, providing the desired return result.
The execution traces that our approach collects contain function
calls. For desired functions, we are also able to extract function
parameters. Hence, with such rich execution traces, we are able
to relate scheduling system functions and the respective
runnables in order to extract the scheduling scheme that the
developers implemented. It is only necessary to execute all
software runnables once. The assumption that the scheduling
scheme is static and determined at the beginning of the execution
guarantees that, once identified, the scheduling scheme will not
change. In the second case, we consider AUTOSAR
(AUTomotive Open Systems ARchitecture). The entire
AUTOSAR configuration is static and contains runnable
attributes (priorities, triggers for event-triggered runnables,
periods for time-triggered tasks, etc.). For each runnable,
AUTOSAR generates a deployment configuration OIL (OSEK
Implementation Language) file. We implement a parser for OIL
files and reconstruct the scheduling scheme of runnables. For
design space exploration, we leave an option in our approach to
specify the scheduling scheme manually.

C. Identification of unnecessary locks
Locking mechanisms are computationally expensive

operations and have a negative effect on parallelism. Besides
standard locking errors, we are able to detect unnecessary use of
locks. This is an important hint to developers in terms of
software maintainability. It is a common case that due to some
changes, a previously shared variable becomes accessible by
only a single runnable, or a group of non-concurrent runnables.
Developers might forget to remove synchronization at some
point. Our approach can detect such cases.

V. EVALUATION OF THE APPROACH

In order to evaluate our approach, we used an industry-like
example of a Cruise Control software [18]. The Cruise Control
software consists of functions that communicate over shared
data structures. We parallelized functions of this software into
individual runnables and introduced additional shared variables
(Fig. 6). In R2 and R7, we synchronize, with locks, the accesses
to _C_SYSTEM_GLOBAL. In R3 and R9, we synchronize, with
locks, the accesses to _D_SYSTEM_GLOBAL. We introduce
data races in R6, with some partially synchronized accesses to
_B_SYSTEM_GLOBAL, and to R2, with some partially
synchronized accesses to _D_SYSTEM_GLOBAL and
_E_SYSTEM_GLOBAL. Other accesses to introduced variables
are unsynchronized. We executed parallelized software on our
LLVM and FERAL infrastructure, and performed an analysis on

<Variable>
SYSTEM_GL

OBAL

A B C D E

R1[initAll]

R6[Crui
seSpee
dMgt]

R2[Saturate
Throttle]

R7[Crui
seState

Mgt]

R9[Cruise
Control]

R8[Dete
ctSpeedL

imits]

R3[Throttle
Regulation]

R4[Throttl
eCmd]

R5[DetectPe
dalsPressed]

A B E A B C A C DB D E

Fig. 6: Access to shared _SYSTEM_GLOBAL(_A_, _B_, _C_, _D_, _E_)

Instruction set
simulator (LLVM)

System
simulator
(FERAL) Callbacks

Interface
function call

results
function call

Fig. 5: Supervised testing concept

237

the execution trace. Our analysis provided a report on which
variables and memory locations our runnables are accessing and
with which frequency. Based on the analysis report, we designed
a static scheduling scheme to separate the runnables with the
highest frequency accesses to the shared variables (Fig. 6). We
repeated the analysis of the execution, considering the
scheduling scheme as a synchronization mechanism. When
considering scheduling, our analysis identified a lower number
of accesses to shared variables and data races (Table 3). This is
due to the fact that the second analysis considered only the
execution traces of mutually concurrent runnables. If the
analysis does not consider synchronization in software that relies
on scheduling as a synchronization mechanism, the outcome of
the analysis will contain a large number of false positives.

VI. CONCLUSION, DISCUSSION AND FUTURE WORK
Our approach detects shared variables between runnables,

data races, and frequency with which runnables are accessing to
shared memory. These data is useful for design space
exploration in terms of organizing a scheduling scheme to
improve the efficiency of concurrent software. With the
experiment setup and the results, we demonstrate how to relate
scheduling with synchronization between runnables and
concurrency bugs. This enables rapid prototyping of scheduling
schemes and evaluation of their influence on software
concurrency aspects. We are also able to detect cases of
unnecessary use of locks (e.g., locking runnables do not execute
concurrently). We have implemented code coverage analysis
alongside our testing approach to quantify the percentage of
tested code and to generate test cases. These results will be the
subject of future publications.

Our approach is applicable only in systems that rely on a
customized scheduling scheme. The assumption is that system
engineers already guarantee the timing properties. In the future,
we plan to expand our approach and include other types of
concurrency bugs and synchronization mechanisms. We will
evaluate our approach on real-world software and compare it
with existing tools in order to reason about its efficiency and
precision.

ACKNOWLEDGMENTS
 This work was supported by the Fraunhofer High-

Performance Center Simulation- and Software-based Innovation
in Kaiserslautern, Germany. We thank Sonnhild Namingha from
Fraunhofer IESE for reviewing a first version of this article.

REFERENCES

[1] Bruce Jacob et ai., “Memory Systems Cache, DRAM, Disk”, ISBN: 978-
0-12-379751-3

[2] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro,
Thomas Anderson, “Eraser: a dynamic data race detector for
multithreaded programs”, ACM Transactions on Computer Systems
(TOCS), v.15 n.4, p.391-411, Nov. 1997

[3] Patrick Cousot, Radhia Cousot, “Abstract interpretation: past, present and
future”, Proceedings of the Joint Meeting of the Twenty-Third EACSL
Annual Conference on Computer Science Logic (CSL) and the Twenty-
Ninth Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), July 14-18, 2014

[4] Antoine Miné et al., “Taking Static Analysis to the Next Level: Proving
the Absence of Run-Time Errors and Data Races with Astrée”, In
Embedded Real Time Software and Systems - ERTSS 2016

[5] M. C. Rinard, “Analysis of multithreaded programs”, In Proc. of the 8th
Int. Symp. on Static Analysis (SAS’01), volume 2126 of LNCS, pages 1–
19. Springer, Jul 2001

[6] A. Deutsch, “Static Verification of Dynamic Properties”, ACM SIGAda
2003 Conference, 2003

[7] G. J. Holzmann, "The model checker spin", IEEE Trans. Softw. Eng., vol.
23, no. 5, pp. 279-295, 1997

[8] Harald Altinger, Franz Wotawa, Markus Schurius, “Testing methods used
in the automotive industry: results from a survey”, Proceedings of the
2014 Workshop on Joining AcadeMiA and Industry Contributions to Test
Automation and Model-Based Testing, July 21-21, 2014

[9] S. Keul, “Tuning Static Data Race Analysis for Automotive Control
Software”, Proceedings of the 11th IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM) 25-26
September, pp. 45-54, September 2011

[10] R.H.B. Netzer and B.P. Miller, “Improving the Accuracy of Data Race
Detection,” Proc. 3rd ACM SIGPLAN Symp. Principles and Practice of
Parallel Programming (PPOPP 91), ACM Press, pp. 133-144, 1991

[11] S. Lu, J. Tucek, F. Qin, and Y. Zhou. “AVIO: Detecting atomicity
violations via access interleaving invariants”, In International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2006.

[12] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation”, In Code Generation and
Optimization, 2004. CGO 2004. International Symposium on, pages
75{86. IEEE, 2004

[13] Baris Kasikci, Cristian Zamfir, George Candea, “Automated,
Classification of Data Races Under Both Strong and Weak Memory
Models”, ACM Transactions on Programming Languages and Systems
(TOPLAS): Volume 37 Issue 3, June 2015

[14] Mingxing Zhang, Yongwei Wu, Shan Lu, “AI - A Lightweight System
for Tolerating Concurrency Bugs”, FSE 2014 Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2014

[15] Effinger-Dean, L. et al., “IFRit: interference-free regions for dynamic
data-race detection”, In: OOPSLA, pp. 467–484, 2012

[16] Konstantin Serebryany et al., “Dynamic race detection with LLVM
compiler”, Proceedings of the Second international conference on
Runtime verification, September 27-30, 2011

[17] T. Kuhn, et al., “FERAL - Framework for Simulator Coupling on
Requirements and Architecture Level”, In Eleventh ACM-IEEE
International Conference on Formal Methods and Models for Codesign,
October 2013.

[18] http://frama-c.com/download_neon.html, version 01.03.2014
[19] OSEK/VDX Communication Specification 2.1 revision 1, 17 June 1998,

https://www.autosar.org/fileadmin/files/releases/2-0/software-
architecture/communication-stack/standard/AUTOSAR_SWS_COM.pdf

[20] http://man7.org/linux/man-pages/man2/sched_getaffinity.2.html
[21] Jasmin Jahic et al., “Test Coverage Measurements to support Design

Space Exploration”, IDEAL 2014, IFIP First International Workshop on
Design Space Exploration of Cyber-Physical Systems

TABLE 3: THE NUMBER OF ACCESSES TO SHARED VARIABLES AND DATA
RACES. INCLUSION OF SCHEDULING IN CONCURRENCY BUGS ANALYSIS
ELIMINATES ONE SOURCE OF FALSE POSITIVES.

Analysis Accesses to shared
variables

Data races

Without scheduling 168 136
With scheduling 8 6

238

	29 - Paper

