
A Scriptable, Standards-Compliant Reporting and

Logging Extension for SystemC

Jan Wagner, Rolf Meyer, Rainer Buchty and Mladen Berekovic

TU Braunschweig, E.I.S., D-38106 Braunschweig, Germany

Email: {wagner, meyer, buchty, berekovic}@c3e.cs.tu-bs.de

Abstract—The shift towards more and more complex System-
on-Chips fosters high-level modeling (HLM) of new systems
in order to provide required time-to-first-virtual-prototype and
adequate simulation speed. Using HLM furthermore allows
running exhaustive simulations are, enabling the developer to
gain a plethora of information from the system during simulation.
Reporting, logging, analyzing, and interpreting this vast amount
of data requires a potent report and logging system. This paper
proposes such a solution: the presented system is build on
the foundations of SystemC’s sc_report class and maintains
full compatibility with it. To provide extensive search and
analysis features, the proposed solution features Python-based
scripting capabilities and supports attached key-value pairs to
each report message. Using highly efficient black- and whitelisting
filters empowers the user to reported events during runtime
and suppresses all irrelevant reports in order to achieve fast
simulation. Filter rules are fully scriptable and interpreted during
simulation runtime, allowing dynamic adaption of the rules based
on events occurred. All proposed mechanisms were evaluated
under real-world conditions in an existing virtual prototype
platform, including a report database backend, enabling easy
analysis of the generated data.

Keywords—SystemC, TLM, sc report, report, logging, Python,
scripting

I. INTRODUCTION

Modern embedded systems integrate large numbers of
components on single chips. This development demands for
new solutions to support efficient design of such Systems on
Chip (SoCs), which may contain multiple processors combined
with dedicated hardware. This trend is driven by the constant
technological progress, which since the early 1970s has led to
chips with ever larger capacities at lower costs. The strive for
efficient utilization of the available silicon has triggered several
paradigm shifts in system design: while in the early 1990s,
VHDL and Verilog took over from schematic design, today,
virtual platforms combined with techniques such as SystemC
and Transaction-Level Modeling (TLM2.0) are about to further
raise the abstraction level [1][2].

With raising the abstraction-level, new possibilities for
gathering information from the simulated system were intro-
duced. Not only is the simulation speed of a full-system
simulation is increased significantly, but, in addition, high-level
programming also offers plenty of options how to process and
store information.

The research leading to these results has received funding from the
ARTEMIS Joint Undertaking under grant agreement no 621447 (Project “R5-
COP”).

SystemC and TLM speed up the simulation by several
orders of magnitude relative to RTL simulations [3]. That high
simulation speed allows running long simulations within rea-
sonable time. Where simulation of a System-on-Chip booting
an operation system based on an RTL-model can easily take
several days, it can be performed on a SystemC/TLM-model
in less than an hour. Such a simulation easily results in an
enormous amount of events which can be stored in a file
or database for subsequent analysis: given a RISC processor
running at a simulated speed of 100 MHz, executing one
instruction per clock cycle, booting an operating system in
30s results in an instruction log with 3 billion (3∗109) logged
events. Since not only one event per instruction is recorded, but
other events as well, the recording mechanism’s performance is
critical. Furthermore, the recorded amount of data can exceed
the size of several gigabytes very quickly. Hence, the recording
framework must be aware of the performance impact on the
simulation and able to reduce the amount of generated data
with smart filters before it is processed and written to disk.

A logging mechanism suitable for SystemC/TLM simula-
tions needs to consider these issues in an appropriate way:
firstly, the impact on simulation performance must be as
little as possible; secondly, the collected information must be
prepared in order to aid the designer finding desired data during
the analysis phase. Fostering the use of search queries on the
logged data requires preserving the data type of additional
information together with the main message text (e.g., an
address) and its name. Another main concern is to pay attention
to the source of the logging message. The location of the
logging request in the source code is less important in this
context. More important is the location within the sc module
hierarchy, since the very same code can be instantiated at
several places in a SystemC/TLM simulation.

To give a sharp definition which particular issue the
proposed solution addresses, the terminology of the terms
tracing, logging and reporting needs to be clarified: tracing
is defined in the SystemC standard [4, Chapter 8.1] as fol-
lows: “a trace file records a time-ordered sequence of value
changes during simulation”. The definition of reporting is
given in the description of the sc report handler: “[. . . ]
sc report handler provides features for writing out textual
reports on the occurrence of exceptional circumstances [. . . ]”.
Finally, Logging is a feature of reporting and is described as
writing report messages into a file. Following these definitions,
the proposed extension addresses reporting and logging in
SystemC simulations, tracing is not considered in this work.

The remainder of this paper is structured as follows:
Section II presents an overview on related work; Section

978-1-4673-7311-1/15/$31.00 ©2015 IEEE 1



III explains the proposed logging extension. Section IV is
dedicated to the technical details, Section V contains the
evaluation, and in Section VI, conclusions are drawn.

II. RELATED WORK

In the past years, we have used a straightforward logging
system (called verbosity kit) within our SystemC/TLM2.0
virtual platform [5]. It is based on regular C++ streaming
to stdout, extended by some SystemC-related features such
as adding the current simulator time and delta cycles to
each line, support of five distinct message types (debug, info,
report, warning, error), a predefined place for the module
name, and text coloring for readability purposes. Furthermore,
performance issues were addressed by making use of compiler
optimizations. The log level is defined as a constant value
enabling the compiler to remove never-executed logging code
at compilation time. However, the log level is required to be
defined before compilation, hence the whole system needs
to be recompiled after it was changed. While performing a
validation of our virtual platform against the RTL simulation of
the corresponding hardware, we encountered the limits of this
logging approach: we had to compare the time of occurrence
of several 100.000 events from both simulations, including
additional information like addresses. It turned out that parsing
several gigabytes of log files with Python scripts can be very
time-consuming, since parsing of data is very slow. From this
experience we formulated the following requirements for a
logging framework:

(a) Usability improvement:

• Fine-grained control at runtime of which logging
statements are required in order to reduce the
amount of recorded data without recompilation

• Clear coding style, since we realized most logging
statements using stream operators are hard to read.
Further discussions of this can be found in [6].

(b) Analysis support:

• Possibility to attach additional information to cer-
tain events as a key/value pair preserving the data
type to aid subsequent analysis.

• Flexible storage backend in order to support subse-
quent analysis.

(c) Overhead reduction: reduce the overall logging overhead
(d) Compatibility: take into account the SystemC/TLM stan-

dard [4] in order to maintain compatibility to TLM com-
ponents of other vendors

Considering these requirements the following solutions
were evaluated. A general overview of text-based logging
including theoretical foundations is given in [7].

Most logging frameworks are bound to a certain use-cases,
for example the presented solutions by Kraft et.al. [8], Hung
et. al. [9] or demonstrated with TinyTLS [10] are designed for
embedded systems and their very limited resources. Since in
SystemC/TLM simulations the resources are not the bottleneck,
but performance and data processing, these frameworks do not
satisfy our needs. Other frameworks are tailored to specific sys-
tem architectures. Verbowski et. al. [11] describes an approach
for logging events on monitored clients and analyzing them on
a central observer. Anderson et. al. [12] proposes a solution

for a similar scenario. Other techniques require a lot of manual
work to integrate them: Aleekseev et. al. [13] utilizes the
control-flow graph for finding a set of monitoring points, which
reduce the impact to the program execution to a minimum.
The result of the process would support the requirements of
a SystemC/TLM simulation, but applying this approach is not
feasible.

A couple of other general purpose C/C++ logging libraries
exist, which could be used in conjunction with SystemC/TLM:
VampirTrace’s focus is in the high-performance computing
domain [14], especially parallel programs. This includes
tracing function enter and leave events, MPI communication,
OpenMP events, and performance counters. Technically, this
is realized by code instrumentation. Unfortunately it is only
capable to perform tracing, it does not respect the inherent
structure of a SystemC simulator, and, moreover, SystemC
simulations neither use OpenMP nor MPI communication at
all.

log4cxx [15] is a C++ clone of the de-facto Java standard
logging utility log4j. At the first glance, it is a good candidate
to be used in SystemC simulators. It supports hierarchical
loggers, which surely can be mapped to the sc module hierar-
chy in SystemC simulators. Moreover, it has built-in support
for message filtering regarding their importance, like DEBUG,
INFO, or WARNING level. However, it has shortcomings
regarding the other postulated requirements: there is no fine-
grained control on logging during runtime, and no support for
attaching key/value pairs to reports. This leads to the same
unhandy coding style with streaming operators as with the ver-
bosity kit. Furthermore, it does not integrate with sc_report
as described in the SystemC/TLM standard [4]. CULT [16]
claims to be a tracing and logging framework for SystemC,
it focuses on tracing using the definition given in IEEE-1666
[4]. The reporting features of CULT have similar drawbacks as
log4cxx: no fine-grained control during runtime, no possibility
to attach additional information, resulting in an unclear coding
style by attaching information manually. Despite it is explicitly
designed for SystemC, it is not compatible to sc report, which
is the standard reporting mechanism defined for SystemC [4,
Chapter 8.2]. sc report comes with a lot of features, but
is neglected by the SystemC community since it has some
drawbacks: a minor one is that the content of the message-
type field needs to be filled with adequate values by the
programmer at every logging request in the source code. The
standard is furthermore vague regarding which information to
put in there. More important to us is that no data can be
appended to a log message, e.g., the address of a request to
the system bus, except converting it to a string. Another major
drawback from analysis point of view is the lack of appropriate
mechanisms for runtime control over when messages should be
generated and when not in order to reduce the overall amount
of messages. Even with having such a mechanism, huge
amounts of messages are generated; hence, a more flexible
storage backend implementation is required to store data in a
well-structured manner.

The approach presented in this paper is based on the
foundations of sc report and will overcome the impairments of
sc report. It extents the functionality of the sc report feature,
while maintaining full compatibility to the standard [4].

2



III. BACKGROUND AND PROPOSED API

���������������	�
�����������

����������������������������
�����������������
 ������� 
�����

���������������������������������������������

���������������������!�"����������������������������� ����������������������������

���������

�����������#$���
�������

�����

�����

Fig. 1: Actions triggered by a report request

A. Background of sc report

sc_report is an object representing a report. The
reporting integrated in SystemC offers macros for creation
of these objects. For predefined severity levels, macros
are defined: SC_REPORT_{INFO, WARNING, ERROR,
FATAL}(id, msg) with id as a so-called message
type, which is a string and the message itself. Additionally,
SC_REPORT_INFO_VERB(id, msg, verbosity)

allows manual setting the verbosity between 0 and 500.
[4] recommends to build the id following this pattern:

“/originating company or institution/product identifier/-
subcategory/subcategory...”. This recommendation
unfortunately misses the aspect that a very same component
can be instantiated multiple times at different places within a
SystemC simulator, and the suggested information therefore
cannot be derived from information, which is available
anyway in the platform. Hence, we automatically fill in
the sc_module name, including the full hierarchical path,
to create a unique id within the system pointing to the
report-issuing component.

Beyond this, an sc report contains the filename and line
where it was created in the source-code, the sc process-name
and of course the sc time stamp when the event occurred.

B. Background of sc report handler

sc report handler provides features for handling sc report
objects. Not only methods for generating new reports are
provided, but also mechanisms for managing generated
reports. The report handler holds a verbosity threshold-level:
reports with a higher verbosity-level than the threshold are
ignored. Another important mechanism is that one or more
actions can be assigned to every report message. Actions
define what should happen with reports matching certain
criteria. Criteria are severity level, message type, or a
combination of both. For each severity level, default actions
are defined which the programmer can alter. Valid actions are
SC_UNSPECIFIED, SC_DO_NOTHING, SC_THROW,

SC_LOG, SC_DISPLAY, SC_CACHE_REPORT,

SC_INTERRUPT, SC_STOP, SC_ABORT. SystemC
provides a replaceable default handler for executing the
actions assigned to every report message.

C. Building blocks of proposed SystemC logger

The proposed solution is composed of four components ad-
dressing different aspects of the requirements. Each component
will be discussed separately.

Frontend/SystemC API/Extension of sc report: This
paragraph describes the interface for generating reports. With
listing 1, an example is provided how the programmer can use
the proposed framework.

Listing 1: SystemC example

1 srInfo(<optional id>)

2 ("key1", value1)

3 ("key2", value2)

4 ("message");

In line one, the report’s severity level is defined by choosing
one of the predefined levels or user-defined types. Predefined
types are srInfo, srWarn, srError, and srFatal repre-
senting the standard severity levels of sc report. Additionally,
we defined srDebug, srAnalyse and srMessage: these
are of srInfo severity level, but offer different levels of
verbosity. Each function takes an id string as its optional
argument, except srMessage, which in addition takes a non-
optional parameter manually defining the verbosity level (like
SC_REPORT_INFO_VERB). If no id is given, the hierarchical
sc module name is inserted automatically.

Line two and three define optional key/value pairs attached
to the report message. There is no limit on how many pairs
can be attached. The last parentheses in line four contains the
mandatory message text.

Extension of sc report handler: sc report handler
was extended with respect to the additional key/value pair,
which now can be attached to the reports. Beyond that,
the filtering mechanism was improved regarding flexibility
and speed. Filtering now supports black- and whitelisting of
sc objects. For id search, a speed-up was achieved by using
a fast pointer comparison instead of a string comparison like
in the default handler.

A new report handler function for sc report handler:
The default handler shipped with SystemC was replaced by an
entirely new component. It takes all incoming report messages,
including all information stored in the sc report-object, and
passes it into a Python runtime environment where the actual
handler is implemented.

Python backend: The Python backend is very straight-
forward. A function can be registered within a regular Python
script to be called when a report needs to be processed. The
function needs to take certain arguments as shown in listing
2.

Listing 2: Python backend example

5 def report(

6 message_type=None,

7 message_text=None,

8 severity=None,

9 file_name=None,

10 line_number=None,

11 time=None,

12 delta_count=None,

13 process_name=None,

14 verbosity=None,

15 what=None,

16 actions=None,

17 phase=None,

18 **kwargs):

3



The filtering mechanisms in the sc report handler
are also accessible from the Python script. The
verbosity level can be set with set_verbosity(int

level); the white- and blacklisting filters can be
configured with set_filter_to_whitelist(bool

value), add_sc_object_to_filter(name,

severity, verbosity), and remove_sc_object_-

from_filter(name), where name is the full sc module-
name including the path in the module hierarchy.

IV. TECHNICAL DETAILS

A. API implementation

The sc_report object contains a field for the file name
and line number of the report issuing location in the source
code. This information is not directly available to C++ code
as a variable, but the preprocessor provides this informa-
tion during macro interpretation as values through constants
__FILE__ and __LINE__. Hence, macros are essential to
implement the API.

To ensure good usability, the API user should be freed from
typing the same code over and over again, but influence the
outcome when necessary. Therefore, the input of id should
be optional. If no input is given, the hierarchical sc_object
name is filled in. Unfortunately, no macro overloading is avail-
able, but its behavior can be emulated with clever combination
of available features as shown in Listing 3.

Listing 3: Macro implementation

19 #define _GET_MACRO_(dummy,_1,NAME,...) NAME

20

21 #define srInfo(...) _GET_MACRO_(\

22 dummy,\

23 ##__VA_ARGS__,\

24 srInfo_1(__VA_ARGS__),\

25 srInfo_0())

26

27 #define srInfo_0()\

28 sr_report_handler::report(\

29 sc_core::SC_INFO,\

30 this,\

31 this->name(),\

32 "",\

33 sc_core::SC_LOW,\

34 __FILE__, __LINE__)

35

36 #define srInfo_1(id)\

37 sr_report_handler::report(\

38 sc_core::SC_INFO,\

39 NULL,\

40 id,\

41 "",\

42 sc_core::SC_LOW,\

43 __FILE__, __LINE__)

If srInfo() appears in the source code, the following
actions happen during macro evaluation: the helper macro
_GET_MACRO_ is used to decide whether the srInfo_0 or
the srInfo_1 should be chosen. This happens by putting
the arguments __VA_ARGS__ before the macro names to be
executed (line 23 to 25). The double hash ## suppresses the
trailing comma. Hence, the to be executed macro shifts to the
third position in the arguments list of _GET_MACRO_. In case

no argument is passed to srInfo, line 25 represents the third
argument; in case one argument is passed, line 24 represents
the third argument.

The bracket-chaining interface for adding an arbitrary num-
ber of key/value pairs is built upon the techniques shown in
[17] for the desc.add_options method. Technically, it is
based on overloading of the () operator, where each bracket
with a key/value pair returns a pointer of the current instance
of the sr_report class. This way, an unlimited number of
key/value pairs can be attached, until the last bracket only
contains the message string.

B. SystemC and Python integration

The Python-to-SystemC interface was implemented using
the standard Python/C API as described in [18]. Basically,
the SystemC program calls a Python function registered as a
callback function to the simulation’s C++ part. To this function,
all standard fields of sc_report as defined by IEEE-1666 [4]
are transferred as parameters, whereas the optional key/value
pairs are passed in a dictionary to preserve the relation between
the key name and its value.

V. EVALUATION

A. Performance test

The test setup for the reporting system was based on a com-
plete System-of-Chip simulation: the centerpiece of this SoC
is a Leon 3 processor, which was created by Aeroflex/Gaisler
as a Sparc V8 derivative for the European Space Agency
[19]. To constitute a complete SoC, accompanying peripherals
are required. Most important components are the AMBA bus
module connecting the Leon core with its MMU and memory
controller via AHB, and further peripherals like interrupt
controller (IRQMP), timer module (GPTIMER), and the UART
device via APB. All mentioned components are available as
VHDL models from Gaisler and also as SystemC/TLM2.0
models as described by Schuster et. al. [5], available on GitHub
[20]. Since reporting does only make sense when the simulator
is fed with software, a synthetically benchmark was run to
trigger the reports. According to the simulator, this benchmark
would require 48.2 s to finish on real hardware with a 100 MHz
clock. To stress the reporting part of the simulation, each and
every memory access was reported in the memory management
unit (MMU) and in the memory model, including with address
and data request length. This results in more than 211 million
report messages during simulation execution, causing log files
of 24 GB or a database of 8.8 GB size. This configuration
can be considered as worst case, because usually less frequent
events are reported or the reported events are limited to certain
components like the MMU. All simulations were performed on
an Intel i7-4790 CPU equipped with 16 GB RAM and an SSD
drive.

Firstly, the effect of introducing the proposed framework
into the simulation was determined. Therefore, a simulation
was run without reports, and the very same simulation was
run reporting all memory accesses on MMU and memory
level, while the black- and whitelisting filters suppressed all
reports. As depicted in Figure 2, the overhead introduced by
this scenario is negligible. In our tests, the simulation takes
only approximately 10% longer with suppressed reports than

4



5



absolute necessity by activating verbose reporting if required
and deactivating it afterwards. The process of activation and
deactivation can be triggered by report messages or by static
rules, such as after reaching a predefined time in simulation
verbose logging is activated.

Moreover, messages can easily be processed with all op-
tions Python offers. For our work, it was very beneficial
to store all reports into a database, allowing queries on the
produced data fostering easy analysis. As database, HDF5 [21]
was chosen because of its capability to handle large amounts
of data and good Python integration. The database itself was
designed for databases with enormous growth in size and
complexity. The advantage of having fast and easy access to
the data comes at a worst-case 2.7-times slowdown compared
to plain stdout logging if all messages are stored. As with
the console logging, the slowdown can be mitigated using the
white- and blacklisting filters.

All benchmarks presented in this paper were performed
with a single-threaded simulator, which results in sequential
processing of the simulation and the reporting and logging
components. Using recent multi-core hardware, we expect the
overhead can be reduced significantly when report handling,
like preprocessing, printing or storing into the database, are
shifted into separate threads. Multi-thread support is currently
worked on.

C. Requirements evaluation

All requirements stated at the beginning of this paper were
satisfied.

(a) Fine grained control at runtime is available through the
Python script interface in conjunction with black- and
whitelisting filters.

(b) Key/value pairs can be attached to every report.
(c) As storage backend, everything Python interfaces to is

possible. Console reporting and database storage were
implemented.

(d) The overhead was kept as low as possible through efficient
implementation of black- and whitelisting.

(e) Clear coding style is supported by bracket-chaining API
and automatic insertion of the id if desired.

(f) Full compatibility to the SystemC standard is main-
tained. All reports using the standard functionality of
sc_report are treated in the same way as the extended
reports.

VI. CONCLUSION

A standard-compliant extension of sc_report was pro-
posed, compared to the standard approach and benchmarked
with an analysis of reports for a real debugging case. The
default reporting tools of SystemC were extended with a
comfortable scripting interface and support for smart handling
of key/value pairs attached to reports. The scripting interface
relies on the Python scripting language and the widespread li-
braries available for it. With the introduction of efficient black-
and whitelisting mechanisms, the simulation time impact can
be reduced to a minimum, while still benefitting from the
capable scripting interface. Further speedup is expected with
introduction of multi-thread support, which will be available
in the near future.

REFERENCES

[1] Kun Lu, Daniel Müller-Gritschneder, Ulf Schlichtmann, “Accurately
Timed Transaction Level Models for Virtual Prototyping at High
Abstraction Level,” in Design Automation and Test in Europe (DATE),
2012.

[2] A. Gerstlauer, S. Chakravarty, M. Kathuria, P. Razaghi, “Abstract
system-level models for early performance and power exploration,” in
The 17th Asia and South Pacific Design Automation Conference, 2012,
pp. 213–218.

[3] F. Ghenassia, Transaction-Level Modeling with SystemC: TLM

Concepts and Applications for Embedded Systems. Springer, 2005.
[Online]. Available: http://researchbooks.org/0387262326

[4] “IEEE Standard for Standard SystemC Language Reference Manual,”
IEEE Std 1666-2011 (Revision of IEEE Std 1666-2005), pp. 1–638,
2012.

[5] T. Schuster, R. Meyer, R. Buchty, L. Fossati, and M. Berekovic,
“SoCRocket – A virtual platform for the European Space Agency’s SoC
development,” in Reconfigurable and Communication-Centric Systems-

on-Chip (ReCoSoC), 2014 9th International Symposium on, May 2014,
pp. 1–7.

[6] Google Style guide for C++. [Online]. Available: https://google-
styleguide.googlecode.com/svn/trunk/cppguide.html#Streams

[7] J. Valdman, “Log File Analysis,” Department of

Computer Science and Engineering (FAV UWB).,

Tech. Rep. DCSE/TR-2001-04, 2001. [Online]. Avail-
able: https://www.kiv.zcu.cz/site/documents/verejne/vyzkum/publikace/-
technicke-zpravy/2001/tr-2001-04.pdf

[8] J. Kraft, A. Wall, and H. Kienle, “Trace Recording for Embedded
Systems: Lessons Learned from Five Industrial Projects,” in Runtime

Verification, ser. Lecture Notes in Computer Science, H. Barringer,
Y. Falcone, B. Finkbeiner, K. Havelund, I. Lee, G. Pace et al., Eds.
Springer Berlin Heidelberg, 2010, vol. 6418, pp. 315–329.

[9] S.-H. Hung, S.-J. Huang, and C.-H. Tu, “New Tracing and Performance
Analysis Techniques for Embedded Applications,” in Embedded and

Real-Time Computing Systems and Applications, 2008. RTCSA’08. 14th

IEEE International Conference on. IEEE, pp. 143–152.

[10] R. Sauter, O. Saukh, O. Frietsch, and P. J. Marrón, “TinyLTS: Efficient
Network-Wide Logging and Tracing System for TinyOS,” in INFO-

COM, 2011 Proceedings IEEE. IEEE, 2011, pp. 2033–2041.

[11] C. Verbowski, E. Kiciman, A. Kumar, B. Daniels, S. Lu, J. Lee et al.,
“Flight Data Recorder: Monitoring Persistent-State Interactions to Im-
prove Systems Management,” in Proceedings of the 7th symposium on

Operating systems design and implementation, ser. OSDI ’06. Berkeley,
CA, USA: USENIX Association, 2006, pp. 117–130.

[12] E. Anderson, C. Hoover, X. Li, and J. Tucek, “Efficient tracing
and performance analysis for large distributed systems,” in Modeling,

Analysis & Simulation of Computer and Telecommunication Systems,

2009. MASCOTS’09. IEEE International Symposium on. IEEE, 2009,
pp. 1–10.

[13] S. Alekseev, “Algorithms for Optimally Tracing Time Critical Pro-
grams,” in The 2006 International Conference on Software Engineering

Research and Practice. Citeseer, pp. 26–29.

[14] M. Jurenz. TUD-ZIH – VampirTrace. [Online]. Available: http://www.tu-
dresden.de/zih/vampirtrace

[15] Short introduction to Apache log4cxx. [Online]. Available:
http://logging.apache.org/log4cxx/

[16] W. Hong, A. Viehl, N. Bannow, C. Kerstan, H. Post, O. Bringmann
et al., “CULT: A unified framework for tracing and logging C-based
designs,” in System, Software, SoC and Silicon Debug Conference (S4D),

2012, Sept 2012, pp. 1–6.

[17] Bracket chaining tutorial. [Online]. Available:
http://www.boost.org/doc/libs/1 55 0/doc/html/program options/-
tutorial.html

[18] Python/C API Reference Manual. [Online]. Available:
https://docs.python.org/2.7/c-api/index.html

[19] Aeroflex/Gaisler IP and manual download. [Online]. Available:
http://www.gaisler.com/index.php/downloads

[20] SoCRocket sources. [Online]. Available: https://github.com/socrocket

[21] The HDF group. [Online]. Available: http://www.hdfgroup.org

6




