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Abstract—Processor models for electronic system level (ESL)
simulations are usually provided by their vendors as binary object
code. Those binaries appear as black boxes, which do not allow
to observe their internals. This prevents the application of most
existing ESL power estimation methodologies. To remedy this
situation, this work presents an estimation methodology for the
case of black box models. The evaluation for the ARM Cortex-A9
processor shows that the proposed approach is able to achieve a
high accuracy. In comparison to hardware power measurements
obtained from the OMAP4460 chip on the PandaBoard, the ESL
estimation error is below 5%.

I. INTRODUCTION

Power consumption has become a very important metric for
the design of electronic systems. According to [25], the design
decisions made at early stages of design, i.e. at electronic
system level (ESL), typically have a higher impact on this
metric than the decisions made at later stages. For example,
the selection of processor types and interconnect architec-
tures has a high influence on the power consumption. Once
this selection is made, further design stages are performed
at lower abstraction levels lacking the broad view required
for revising the decisions. Consequently, power consumption
improvements focus on details and thus their effect is limited.

Classical industry standard tools for design space ex-
ploration at ESL, like SystemC [4] or Synopsys Platform
Architect [3], model only the functionality and timing of the
components and lack information about the power consump-
tion. It is desirable to extend all models in the ESL library
with power models. This would allow to predict the power
consumption during early design space exploration at ESL.

Several efforts have been made in academia and industry
to create ESL power models. Because processor cores are the
most complex building blocks of systems as well as the major
contributors to the overall power consumption, most work
has focused on power estimation for processor cores. Almost
all of those approaches require either deep insight into the
internals or manual annotation of the ESL model with power
consumption information.

Modern ESL processor models are usually provided by
their vendors as proprietary binary object code, which is
basically a black box that does not allow observation of the
internal details. This prohibits application of the existing tool-
supported approaches for creating ESL power models. To
alleviate the situation, a different method is suggested in this
work. It allows to create power models for non-cycle-accurate

black box processor models based on a few reference power
curves.

The contributions of this work1 are as follows:

• Efficient tracing of black box processor models to derive
sufficient information for ESL power estimation.

• Enabling calibration-based ESL power estimation sup-
porting non-cycle-accurate simulators and reference
power curves obtained by hardware measurements.

• Evaluation of the ESL black box power estimation method
for ARM Cortex-A9 processors.

II. RELATED WORK

Power estimation at levels above register transfer level
(RTL) has been investigated by academia for several years.
Early system level approaches like [11] were strongly inspired
by RTL power estimation approaches and tried to predict
switching activity of RTL signals from ESL simulations. There
are also recent works like [15] that rely on the RTL code.
However, application of such methods is not possible if the
RTL code is not available.

One of the first works that drop the dependency on RTL
completely is [8]. More recent approaches, e.g. [23] and [13],
focus on the integration of various ESL power models into the
workflow, while other approaches also provide a recipe of how
to create the power models, e.g. [19]. Commercial frameworks
like Mentor Graphics Vista [25] and Docea Aceplorer [1] show
that there is also a growing demand for ESL power estimation
in industry.

Another group of works from academia has investigated
the creation of power models suitable for ESL simulations for
different kinds of system components, e.g. dynamic memories
(DRAMs) [16] or peripheral cores [12]. A method targeted at
communication architectures in general is proposed in [21]. Its
approach of calibrating a linear power model to a reference
power trace is reused in this work.

Processors are the main elements of electronic systems and
have therefore attracted a lot of attention also regarding high
level power models. Early approaches have started to estimate
the power from information about the executed instructions.
Examples are SimplePower [28], Wattch [9] and derivatives
like [10]. The estimation accuracy has been improved by
including information about the functional units, e.g. in [18].

1This work has been supported by Huawei Technologies Co., Ltd.
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Fig. 1: PandaBoard and power measurement setup using
custom voltage converter board and USB-DUXfast

All of the above approaches depend either on manual
creation of a power model based on information from a
detailed data sheet or on observation of the internals of the pro-
cessor model. This is not possible for most modern processor
simulators. In contrast, this work shows how to estimate power
consumption using an instruction-accurate black box processor
model from Open Virtual Platforms (OVP) [2], which does not
allow to observe its internals.

III. REFERENCE SYSTEM

The PandaBoard [7] features a Texas Instruments
OMAP4460 chip [6], which contains an ARM Cortex-A9
subsystem with a separate power domain. This subsystem has
been chosen for reference timing and power measurements.

The ARM subsystem is based on two ARM Cortex-A9
cores clocked at 1.2GHz. Both cores have separate level 1 (L1)
caches for instruction and data. All L1 caches are 4-way
associative and have a capacity of 32 kB and a line size of
32B. The two data caches are kept coherent by the so-called
Snoop Control Unit (SCU). In contrast, the instruction caches
are not participating in the coherency protocol, as those are
only read and never written.

All L1 caches are connected via a shared level 2 (L2)
cache of size 1MB to the DRAM interface and the global
interconnect of the OMAP4460. The DRAM memory interface
provides access to a 1GB LPDDR2 (low-power, double data
rate, version 2) memory. The global interconnect allows to ac-
cess the peripherals, for example the Universal Asynchronous
Receiver and Transmitter (UART), the Ethernet interface and
the general purpose input/output (GPIO) pins.

A. Power Measurement

The ARM Cortex-A9 power domain is driven by a separate
switched mode power supply (SMPS) located on the bottom
side of the PandaBoard, directly under the OMAP4460 chip.
The wires from its output to the power input of the OMAP4460
are not easily accessible. Therefore, the power is measured at
the input of this SMPS, although this might introduce a small

measurement error, as the efficiency of the SMPS is less than
100% and might vary with its load.

The data logger USB-DUXfast [5] is used to record the
voltage and the voltage drop over a shunt at the SMPS input
with a resolution of 12 bit and a sampling frequency of 5 kHz.
A custom circuit board converts the voltage levels to the valid
range before feeding them to the data logger. The entire setup
is shown in Figure 1. The power consumption is computed
from the measured values in software on a PC. Additionally,
the state of a GPIO pin is recorded to measure the start time
and the end time of the main() function of the benchmark.

B. Benchmarks

The benchmarks used for creation and evaluation of the
power models have been taken from four different sources. The
first group are standard benchmarks and standard benchmark
suites: Dhrystone [27], LTE uplink receiver PHY bench-
mark [22] (abbreviated lte-bench in this paper), telecomm
package of MiBench [14] (mib/t), StreamIt [24] (stit) and
WiBench [29] (wib).

Most of the standard benchmarks perform floating point
computations. In order to create benchmarks putting load
on the integer functional units of the processor, some of
the benchmarks have been converted to fixed-point integer
operations. The resulting benchmarks form the second group.
They are named like the floating-point versions, but with _int
appended.

The third group of benchmarks is used to investigate the
differences between load on one and two cores, while keeping
communication between the two cores at a minimum. Those
benchmarks have been created by running a benchmark from
the first two groups on both cores. The original benchmark is
first run on both cores at the same time and then two times
on the first core while the second core is idle. This sequence
is iterated three times. The names of the resulting benchmarks
are formed by appending 2co to the name of the original
benchmark.

In-house parallel benchmarks form the fourth group. They
make use of multiple threads communicating to each other. In
contrast to the third group, this causes communication between
both cores. The names of those benchmarks starts with mt.

The benchmarks are run in bare-metal mode, i.e. without an
operating system. The runtime environment for C applications
is based on the GNU C Compiler [26] version 4.8.1, binutils
version 2.23.2 and newlib version 2.0.0 and does not provide
support for the vector coprocessor. Reading from files is
emulated using static arrays included in the application binary.
Data written to standard output is buffered in memory and
transmitted using the UART on benchmark end. A minimal
cooperative scheduler has been implemented for executing
multithreaded applications.

IV. VIRTUAL PLATFORM

This work investigates the accuracy of ESL power estima-
tion using black box processor models. Therefore, the ESL
simulator has been based on an instruction-accurate black box
ARM Cortex-A9 processor model from OVP [2]. This model
is a typical example of proprietary models that are delivered
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Fig. 2: Virtual platform for the OMAP4460 ARM Cortex-A9 subsystem on the PandaBoard, Blue circles indicate the locations
of full TLM tracing, Orange circles indicate locations of simple activity tracing

as a binary object containing all the functionality plus some
limited interface source code for integrating it into a SystemC
simulation.

Based on the OVP ARM model, a virtual platform repli-
cating the OMAP4460 ARM subsystem from the PandaBoard
has been created using Transaction Level Modeling (TLM) 2.0
and SystemC 2.3 [4]. Figure 2 shows a block diagram of the
VP. All connections except for the interrupt wires are modeled
using blocking TLM transactions.

The data caches (D-Cache) and the Coherency Bus have
been written from scratch in order to model the coherent data
caches and the SCU of the OMAP4460. They make use of
TLM extensions to implement the cache coherence protocol
including direct cache-to-cache transfer, as it is used in the
real hardware. In contrast, the instruction caches, the L2 cache,
the simple buses and the UART were taken from an in-house
component model library. The DRAM model is basically a
simple TLM memory model, but it accounts for additional
delay times for page switches and for switching from write
to read. There are more detailed approaches like [17], but
a high degree of abstraction is sufficient for our purpose.
The spinlock memory is only a simulation vehicle used to
implement spinlocks on the VP, as the load-link and store-
conditional instructions are not supported by the OVP ARM
model and the TLM buses. The synchronization block is used
to wake up cores from the sleep state.

Although the source code of all models except for the
processor models is available, all models are treated as black
boxes. This means that the inner details are not observed or
modified. Only constructor parameters are used to configure
their timing, and only their ports are observed for power
estimation.

V. TIMING ANNOTATION

The timing of the VP has to approximate the real hardware
timing as much as possible in order for ESL power estimation
to be feasible. The reason is that the timing is used to correlate
processes in the VP to the corresponding part of the power
consumption curve. Therefore, the VP timing annotations have
been tuned to make the benchmark execution times match
those on the reference hardware. The left column of Table I
shows the parameters available for timing annotation.

timing parameter value

processor instruction 465 ps
additional delay for MUL/MLA 586 ps
additional delay for LDRH/LDRB 1172 ps
delay of buses 0
L1 instruction cache read 275 ps
L1 data cache read 8 ps
L1 data cache write 0
L2 cache read 20 ns
L2 cache write 0
DRAM read 41.7 ns
DRAM write 0
DRAM write/read switch 13.3 ns
DRAM page switch 66.7 ns

TABLE I: Timing annotations of the virtual platform

First, the timing of the core and the L1 instruction cache
has been adapted using small loops of simple instructions not
accessing the L1 data cache. Once their timing was acceptable,
benchmarks issuing reads and writes to the L1 data cache have
been run. The L1 data cache parameters were tweaked until
the timing of the new benchmarks were acceptable. Next, the
L2 cache was included in the benchmarks. This allowed to
find suitable timing parameters for the L2 cache. Finally, the
DRAM timing could be determined using benchmarks also
using the DRAM. Once initial values for all parameters were
available, a refinement of the timing has been done using the
benchmarks described in Section III-B. One or two timing
parameters were changed at a time until the best configuration
was found. This process has been iterated for all parameters
several times.

The resulting timing annotations are listed in Table I. The
processor instruction time is a lot shorter than the 833 ps
cycle time of the real hardware processor. This compensates
the effect that the real ARM Cortex-A9 is superscalar out-of-
order and thus is able to execute multiple instructions at the
same time while the model executes exactly one instruction
per cycle. As some instructions require more time on the real
processor an extra delay is introduced when a fetch transaction
indicates a MUL, MLA, LDRH or LDRB instruction, follow-
ing the idea from [20].

The bus timing and the write times are set to zero, which
reflects the fact that the real hardware provides sufficiently
sized write buffers that are able to hide almost all write
latencies. The read times are non-zero, but the L1 data read
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Fig. 3: Relative timing error of the virtual platform

time is very short, probably due to the out-of-order feature
hiding many read latencies. Finally, the DRAM model timing
introduces extra delays for page switches and for switching
from write to read.

Figure 3 shows the relative timing errors of the final virtual
platform. It can be seen that an average timing error of only
9.1% was achievable even using an instruction-accurate pro-
cessor model and blocking TLM transactions. The maximum
timing error was only 33.4%.

VI. POWER ESTIMATION

The ESL power estimation methodology proposed in [21]
records N traces of T cycles duration from an ESL simulation
as a matrix S ∈ N

T×N . The first trace is always 1 (i.e.
∀t : st,1 = 1) in order to model the constant part of the power
consumption. The power estimate is then calculated from the
traces as follows:

Pest = S · a with a ∈ R
N (1)

The factor vector a is determined by calibration: a reference
power trace Pref ∈ R

T has to be obtained for one scenario.
The methodology assumes that an RTL or gate-level imple-
mentation is available for this calibration scenario and a lower-
level simulation can be used to obtain the reference power
trace.

As the estimate should match the reference as closely as
possible, the factor vector a can be computed using the pseudo-
inverse matrix S

+:

a := S
+ ·Pref (2)

The power estimation approach proposed in this work
reuses the linear power model and the approach of calibra-
tion. However, it supports non-cycle-accurate ESL simulations
based on black-box models as well as reference power traces
obtained from hardware measurements. The requirement for
cycle-accurate traces is dropped. Instead, sampled traces will
be used in the following. This leads to a lower number of
entries T in the traces. To compensate for this, multiple
reference scenarios are used for calibration by concatenating
their traces.

A. Black Box Tracing

The virtual platform described in Section IV is instru-
mented to record traces. Because the processor model is a
black-box model and all the other models are treated as
black-boxes, the traces are recorded on the TLM connections
between the models, as indicated by the blue and orange
circles in Figure 2. The connections to the DRAM and to the
peripherals are not traced, as those components are not part
of the ARM subsystem and their power consumption is out of
scope for this work.

The reference power trace to be used in calibration provides
one sample value per 0.2ms. Therefore, the TLM traces are
also recorded with a resolution of tsamp = 0.2ms in simulated
time. The read and write transactions passing a TLM connec-
tion are counted as well as the extended TLM transactions used
to model the coherence protocol. Every 0.2ms of simulated
time, the counters are written to the trace file and are then
reset for the next interval.

Besides the TLM traces, a second, even more abstract
tracing approach has been applied: the so-called activity traces.
For those traces, only the instruction ports of the processor
models are instrumented. A single trace is recorded for each
processor. This trace is set to zero when the processor fetches
a wait instruction, i.e. when it is halted. On fetch of any other
instruction type, the processor is assumed to be active again
and the trace is set back to one. In total, the activity traces
consists of three traces: the constant 1 trace plus an activity
trace for each processor.

The timing overhead imposed on the simulation by the
tracing is marginal, due to the few instrumentation points and
the sampling intervals being large compared to the cycle times
of the processor models. Exact numbers cannot be given here,
because the license of the OVP processor model does not
permit to publish simulation performance data.

B. Timing Mismatch Compensation

Two effects cause the timing of the traces from the ESL
simulation not to match the reference power traces. First, the
timing error discussed in Section V leads to different lengths
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of both traces. Second, the synchronization of the hardware
power consumption curve to the ESL traces may introduce a
time offset of up to one sampling period: The samples of the
ESL traces are recorded at precisely known simulation times
t · tsamp with t ∈ N. The power consumption sampling of the
hardware starts when the power of the board is turned on, but
due to bootloader and benchmark transfer to the board, the
benchmark code starts at a later time tstart. There is a t with
t·tsamp < tstart ≤ (t+1)·tsamp. Thus, the change of the GPIO
pin signaling the start of the benchmark will be detected at the
following sample time, i.e. with an offset of 0 < tofs ≤ tsamp.
Both effects are shown in the left part of Figure 4.

The calibration approach requires the number of samples
in the ESL traces to match the number of samples in the power
consumption curve exactly. Therefore, the timing error has to
be compensated. This is possible by resampling the ESL traces,
which can be interpreted as a scaling in time. It will ensure that
the end of the benchmark in the ESL simulation is calibrated
to the end of the benchmark on the real hardware.

The timing offset tofs is bounded by the sample time
tsamp, but its exact value is unknown. If it is close to zero,
it will not affect calibration. If it is close to the sample time,
power sample t will almost correspond to ESL sample t + 1
and calibration will result in an inaccurate power model. To
alleviate this effect, the sampling rate is reduced by a factor k.
This does not change the absolute offset tofs, but compared to
the new sampling time k ·tsamp, the relative offset is limited to
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1
k
. The factor k := 10 has been chosen for this work, limiting

the relative offset to 10%.

After compensating the timing mismatch and offset, the
original calibration approach according to Formula 2 is used
to create the power model.

C. Power Estimation Results

In order to maximize the number of test cases while
providing sufficient input to calibration, the evaluation of
the extended power estimation methodology has been per-
formed using leave-one-out cross-validation. This means that
the power model used for estimating a benchmark has been
created using all other benchmarks for calibration.

An example of estimated power curves is shown in Fig-
ure 5. It can be seen that both estimates follow the shape
of the reference curve closely, but the timing error leads
to an estimate scaled in time. Besides this timing effect,
the magnitude of the power estimate matches the reference
very closely when using the TLM traces. Using the simple
activity traces fails to predict the fine substructure of the power
consumption, but predicts the main phases correctly.

Figure 6 shows the resulting black box ESL power es-
timation errors for both variants of ESL tracing. The errors
are computed as relative root-mean-square (RMS) value of the
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difference between estimate and reference:

erel =

√

1
T
·
∑T

t=1 (Pest,t − Pref,t)
2

Pref

(3)

To enable the above power comparison, the timing error has
to be compensated by scaling the estimated curve in time to
match the length of the reference curve, as it is done for
calibration. Using the RMS value provides strong evidence
that the estimate is always close to the reference.

The black box TLM traces result in a maximum error of
20.4% and an average error of only 4.9%. The even more
abstract activity tracing method shows an average error of
5.5%, which is just slightly larger. The maximum error of
19.2% is even lower than for the TLM traces.

VII. CONCLUSIONS

A method for ESL power estimation using virtual platforms
based on instruction-accurate black box processor models has
been created based on the calibration method from [21], which
is originally targeted at cycle-accurate ESL platforms. The
presented case study of the ARM Cortex-A9 subsystem has
shown that black box ESL power estimation can provide
estimates with 4.9% average error compared to hardware
measurements. Even just tracing the activity of each core in
a single trace allows to estimate the power consumption with
an average error of 5.5%.

The evaluation using a general purpose ARM processor
does not permit general statements about all processor types.
Further research is required to investigate the applicability
of the proposed approach to different processor types, e.g.
complex digital signal processors.
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[21] S. Schürmans, D. Zhang, D. Auras, R. Leupers, G. Ascheid, X. Chen,
and L. Wang. Creation of ESL power models for communication
architectures using automatic calibration. In 50th Design Automation

Conference, DAC ’13. ACM, 2013.
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