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Context: Computer Vision (CV)

● How to process and analyse
images to understand them

● Societal impact
○ Education
○ Quality of life
○ Safety

● Embarrassingly parallel 
SPMD on large data sets
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Context: Mobile devices

● Mobile devices’ market growing
○ Large performance increase (25x in 3 years)
○ Affordable
○ Easy to carry anywhere

● Sensors
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Problem statement

● Slow speed of state-of-the-art CV algorithms 
on mobile devices
➢ Simplify algorithms

➢ Optimise the system
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        Software optimisation
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Contributions

● Port and optimise a CV algorithm for a 
mobile SoC
○ Profiling

● Step-by-step optimisation and evaluation of
○ Temperature
○ Performance
○ Power
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State of the art: CV on mobile

● Hardware

● Software
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State of the art: CV app on GPU

● Face recognition algorithm [Cheng’11]
○ OpenGL, Android
○ Qualcomm, NVIDIA, ImgTec
○ Different algorithm, single image

● Image inpainting-based object removal 
algorithm [Wang’13]
○ OpenCL, Android
○ Qualcomm
○ Different algorithm, single image
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Software

● KinectFusion: An algorithm used for
○ Scene scanning
○ Object recognition
○ Augmented reality

● Existing versions:
○ C++
○ CUDA
○ OpenMP
○ OpenCL
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for all frames{
Acquisition();  2.7 %
Preprocessing(); 23.1 %
Tracking();  5.5 %
Integration(); 49.9 %
Rendering();  18.6 %
Drawing();   0.1 %

}



Hardware

● Arndale board: development kit with
○ 2x ARM Cortex-A15 CPUs
○ ARM Mali-T604 GPU
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Benchmarks
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Measurements
● Performance: FPS

○ gprof
○ clock_gettime()

● Temperature: ºC
○ Chip sensors

● Power: W
○ Yokogawa power meter
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Overall procedure

1. Refactoring
2. OpenCL porting
3. Optimisation
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Optimisations
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Optimisations

● Port kernels
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Optimisations
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Optimisations: shared mem
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Optimisations

● Port kernels
● Shared memory
● Reduce synchronisations

○ Remove OpenCL barriers
○ Remove memory mappings
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Optimisations

● Port kernels
● Shared memory
● Reduce synchronisations

○ Remove OpenCL barriers
○ Remove memory mappings

● Parallelise with OpenMP 
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Results

1. Original version evaluation
2. Optimisations evaluation
3. Final results
4. Performance portability
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Temperature
● Original version
● Thermal throttling
● Once every 20 seconds
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Temperature
● Original version
● With a heat sink
● Less thermal throttling: once every 83 sec
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Temperature
● Original version
● With a fan
● No thermal throttling → stable results
● Unfeasible for mobile devices
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Performance
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● More time at 
a high 
frequency 
leads to 
more 
performance



Power
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Execution time

4. Results - Optimisations 29

30%

14%

46%

75%



Performance

4. Results - Optimisations 30

4x



Power
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Performance
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Temperature
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Power
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Same power
+

Less time
=

Energy 
efficiency



Execution time
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Performance
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Summary
● Mobile devices are promising for CV
● CV applications can benefit from GPUs
● We found heat dissipation is a problem
● We optimised KF for a mobile SoC

○ 4x speed up and 3x better energy efficiency
○ 0.6-0.7 to 2.2-3.1 FPS (far from 30 FPS)

● Furthermore, our optimisations:
○ Reduced overheating
○ Are portable across SoC generations
○ Are one step towards interactive rates

5. Conclusions 38



Experiences in Speeding Up 
Computer Vision Applications 

on Mobile Computing Platforms

Luna Backes, Alejandro Rico, Björn Franke

SAMOS XV, Samos, Greece
20/07/2015



Refactoring

● Missing const qualifiers
● Parameters by reference
● Reduce useless function calls
● Porting C++ to C99
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Context: PAMELA project

● Aims to optimise the hardware and software 
configs together: 3D scene understanding

● Learn about optimising many-core systems
● This work is part of the PAMELA project
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