
Experiences in Speeding Up
Computer Vision Applications

on Mobile Computing Platforms

Luna Backes, Alejandro Rico, Björn Franke

SAMOS XV, Samos, Greece
20/07/2015

Context: Computer Vision (CV)

● How to process and analyse
images to understand them

● Societal impact
○ Education
○ Quality of life
○ Safety

● Embarrassingly parallel
SPMD on large data sets

1.Intro 2

Context: Mobile devices

● Mobile devices’ market growing
○ Large performance increase (25x in 3 years)
○ Affordable
○ Easy to carry anywhere

● Sensors

1.Intro 3

Problem statement

● Slow speed of state-of-the-art CV algorithms
on mobile devices
➢ Simplify algorithms

➢ Optimise the system

1.Intro 4

Problem statement

● Slow speed of state-of-the-art CV algorithms
on mobile devices
➢ Simplify algorithms

➢ Optimise the system

1.Intro 5

Poor user experience

Problem statement

● Slow speed of state-of-the-art CV algorithms
on mobile devices
➢ Simplify algorithms

➢ Optimise the system

 Software optimisation

1.Intro 6

Poor user experience

Contributions

● Port and optimise a CV algorithm for a
mobile SoC
○ Profiling

● Step-by-step optimisation and evaluation of
○ Temperature
○ Performance
○ Power

1.Intro 7

State of the art: CV on mobile

● Hardware

● Software

1.Intro 8
Word lens

State of the art: CV app on GPU

● Face recognition algorithm [Cheng’11]
○ OpenGL, Android
○ Qualcomm, NVIDIA, ImgTec
○ Different algorithm, single image

● Image inpainting-based object removal
algorithm [Wang’13]
○ OpenCL, Android
○ Qualcomm
○ Different algorithm, single image

1.Intro 9

Software

● KinectFusion: An algorithm used for
○ Scene scanning
○ Object recognition
○ Augmented reality

● Existing versions:
○ C++
○ CUDA
○ OpenMP
○ OpenCL

2.Experimental setup 10

for all frames{
Acquisition(); 2.7 %
Preprocessing(); 23.1 %
Tracking(); 5.5 %
Integration(); 49.9 %
Rendering(); 18.6 %
Drawing(); 0.1 %

}

Hardware

● Arndale board: development kit with
○ 2x ARM Cortex-A15 CPUs
○ ARM Mali-T604 GPU

2.Experimental setup
1
1

Benchmarks

2.Experimental setup 12

chairs

desktop

person

weird

Measurements
● Performance: FPS

○ gprof
○ clock_gettime()

● Temperature: ºC
○ Chip sensors

● Power: W
○ Yokogawa power meter

2.Experimental setup 13

Overall procedure

1. Refactoring
2. OpenCL porting
3. Optimisation

3. KinectFusion Optimisations 14

Optimisations

3. KinectFusion Optimisations 15

Optimisations

● Port kernels

3. KinectFusion Optimisations 16

Optimisations

● Port kernels
● Shared memory

3. KinectFusion Optimisations 17

Optimisations: shared mem

3. KinectFusion Optimisations 18

S
ou

rc
e:

 A
R

M

Optimisations: shared mem

3. KinectFusion Optimisations 19

S
ou

rc
e:

 A
R

M

Optimisations: shared mem

3. KinectFusion Optimisations 20

S
ou

rc
e:

 A
R

M

Optimisations

● Port kernels
● Shared memory
● Reduce synchronisations

○ Remove OpenCL barriers
○ Remove memory mappings

3. KinectFusion Optimisations 21

Optimisations

● Port kernels
● Shared memory
● Reduce synchronisations

○ Remove OpenCL barriers
○ Remove memory mappings

● Parallelise with OpenMP

3. KinectFusion Optimisations 22

Results

1. Original version evaluation
2. Optimisations evaluation
3. Final results
4. Performance portability

4. Results 23

Temperature
● Original version
● Thermal throttling
● Once every 20 seconds

4. Results - Original 24

85ºC

Temperature
● Original version
● With a heat sink
● Less thermal throttling: once every 83 sec

4. Results - Original 25

Temperature
● Original version
● With a fan
● No thermal throttling → stable results
● Unfeasible for mobile devices

4. Results - Original 26

Performance

4. Results - Original 27

● More time at
a high
frequency
leads to
more
performance

Power

4. Results - Original 28

Execution time

4. Results - Optimisations 29

30%

14%

46%

75%

Performance

4. Results - Optimisations 30

4x

Power

4. Results - Optimisations 31

38%

shared
memory OpenMP

Power

4. Results - Optimisations 32

38%

Performance:
300%shared

memory OpenMP

Performance

4. Results - Final 33

Temperature

4. Results - Final 34

Original

Optimised

Power

4. Results - Final 35

Same power
+

Less time
=

Energy
efficiency

Execution time

4. Results - Performance portability 36

Performance

4. Results - Performance portability 37

Summary
● Mobile devices are promising for CV
● CV applications can benefit from GPUs
● We found heat dissipation is a problem
● We optimised KF for a mobile SoC

○ 4x speed up and 3x better energy efficiency
○ 0.6-0.7 to 2.2-3.1 FPS (far from 30 FPS)

● Furthermore, our optimisations:
○ Reduced overheating
○ Are portable across SoC generations
○ Are one step towards interactive rates

5. Conclusions 38

Experiences in Speeding Up
Computer Vision Applications

on Mobile Computing Platforms

Luna Backes, Alejandro Rico, Björn Franke

SAMOS XV, Samos, Greece
20/07/2015

Refactoring

● Missing const qualifiers
● Parameters by reference
● Reduce useless function calls
● Porting C++ to C99

Backup slides 40

Context: PAMELA project

● Aims to optimise the hardware and software
configs together: 3D scene understanding

● Learn about optimising many-core systems
● This work is part of the PAMELA project

Backup slides 41

