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Abstract—Optical flow estimation aims at inferring a dense
pixel-wise correspondence field between two images or video
frames. It is commonly used in video processing and computer
vision applications, including motion-compensated frame pro-
cessing, extracting temporal features, computing stereo disparity,
understanding scene context/dynamics and understanding behav-
ior. Dense optical flow estimation is a computationally complex
problem. Fortunately, a wide range of optical flow estimation
algorithms are embarrassingly parallel and can efficiently be
accelerated on GPUs. In this work we discuss a massively
multi-threaded GPU implementation of the anisotropic Huber-
L1 optical flow estimation algorithm using OpenCL framework,
which achieves per frame execution time speed-up factors up to
almost 300×. Overall algorithm flow, GPU specific implementa-
tion details and performance results are presented.

I. INTRODUCTION

Optical flow estimation aims at inferring a dense pixel-wise
correspondence field between two images or video frames.
Initiated by the seminal works of Lukas-Kanade [1] and Horn-
Schunck [2], a wide range of optical flow estimation techniques
have been developed [3] and optical flow estimation is still an
active research topic.

Optical flow estimation finds widespread application in
video processing, computer vision, navigation, surveillance
and medicine. Most of these fields have stringent timing
requirements, resulting in a high demand for fast (real-time or
near real-time) implementations. However, dense optical flow
estimation is an inherently computationally complex task that
may also require high memory bandwidth depending on the
applied algorithm. In order to meet the desired performance
level substantial floating point processing power and high
memory bandwidth is required. GPUs (Graphics Processing
Units) are widely used for accelerating computationally de-
manding algorithms given the algorithm allows for a data
parallel implementation [4]. GPUs can be programmed using
the OpenCL (Open Computing Language) framework which
supports data and task level parallelism on heterogeneous multi
and many-core processors [5].

In this work we discuss a massively multi-threaded GPU
implementation of the anisotropic Huber-L1 optical flow es-
timation algorithm proposed in [6] using the OpenCL frame-
work. Section II briefly describes the overall algorithm flow.
Section III discusses GPU specific implementation details.
Section IV presents performance results, and finally Section
V concludes the paper.

II. DENSE OPTICAL FLOW ALGORITHM

Based on a detailed literature survey, the anisotropic Huber-
L1 optical flow estimation algorithm proposed in [6] was
selected as the best compromise of estimated flow field quality,
computational resource requirements and suitability for paral-
lel implementation. According to Middlebury benchmark site
[7], at the time of submission of this paper, average ranking
of the anisotropic Huber-L1 algorithm is 51.1 with respect to
endpoint error [8]. On the other hand, it is one of the fastest
algorithms with an average per frame execution time of 2
seconds for 640×480 input frames. Furthermore, the algorithm
allows for a massively multi-threaded implementation that can
effectively utilize the computational resources of GPUs.

The starting point of the algorithm in [6] is finding a solu-
tion to a disparity preserving spatially continuous formulation
of the optical flow problem based on L1 data term and isotropic
TV regularization. For two input images I0 and I1 defined on
a rectangular domain Ω ∈ R2, the cost funtion to be minimized
over the optical flow vectors is stated as

min
~u

{∫
Ω

2∑
d=1

|∇ud|+ λ|I1(~x+ ~u(~x))− I0(~x)|d~x

}
, (1)

where ~x = (x1, x2) is the 2D vector of pixel coordinates,
and ~u(~x) = (u1(~x), u2(~x)) is the 2D vector of displacements
(flow vectors). Free parameter λ is used to balance the relative
weight of data and regularization terms. Note that data term is
simply the L1 distance between I1(~x+ ~u(~x)) (motion warped
I1) and I0, and regularization term is the sum of absolute
gradients of the flow vectors (which is the idea behind total
variation regularization). In order to simplify the minimization,
an auxiliary variable ~v and a coupling term to ensure that ~v
is a close approximation of ~u is introduced. After applying
anisotropic Huber regularization and with other mathematical
manipulations, details of which can be found in the original
paper, Eq. (1) yields

min
~u,~v

sup
|~pd|≤1

{∫
Ω

2∑
d=1

[
(D

1
2∇ud) · ~pd − ε

|~pd|2

2
+

1

2θ
(ud − vd)2

]

+ λ|ρ(~v(~x))|d~x

}
. (2)

The regularization term that leads to the final form in Eq. (2)
is stated to be anisotropic Huber in the sense that it is dis-
continuity preserving and image-driven, and uses Huber cost,
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which is quadratic for small differences and linear for large
differences. This optimization problem is solved iteratively by
an alternating minimization procedure. For fixed ~v solution
yields to:

un+1
d =vnd + θdiv(D1/2~pn+1

d ), (3)

~pn+1
d =

~pnd + τ(D1/2∇~un+1
d − ε~pnd )

max
{

1, |~pnd + τ(D1/2∇un+1
d − ε~pnd )|

} . (4)

For fixed ~u solution yields to:

min
~v

{∫
Ω

1

2θ

2∑
d=1

(ud − vd)2 + λ|ρ(~v(~x))|d~x

}
. (5)

A thresholding step with three different cases yields a direct
solution:

~vn+1 = ~un+1 +


λθ∇I1, if ρ(~un+1) < −λθ|∇I1|2

−λθ∇I1, if ρ(~un+1) > −λθ|∇I1|2

−ρ(~un+1)
∇I1
|∇I1|2

, else .
(6)

Eq. (3), (4) and (6) present the overall solution to be imple-
mented by replacing all mathematical operations with their
discreet approximations that can be computed on rectangular
image grids.

III. IMPLEMENTATION

Open Computing Language (OpenCL) is a framework for
writing programs that execute across heterogeneous platforms
consisting of CPUs (Central Processing Units), GPUs (Graphic
Processing Units), DSPs (Digital Signal Processors), FPGAs
(Field Programmable Gate Arrays) and other processors [5].
OpenCL supports data and task level parallelism through
a simple to understand and use programming model. Fur-
thermore, since it supports different architectures OpenCL
provides portability to a great extent.

Since the programming model of OpenCL is closely related
to multi/many-core vector processors, it makes good sense
to describe it on an example. The GPUs that are used for
testing the OpenCL implementation reported in this work are
the NVIDIA GTX-780 and GT-640. Based on the full Kepler
GK110 chip implementation, GTX-780 has 12 active (out of
15) SMX (streaming multi-processor) units, corresponding to
2304 (192 × 12) CUDA cores [9], [10]. Its theoretical peak
floating point performance is 3977 GFLOPs. Based on the
Kepler GK107 chip (scaled down GK110), GT640 has 2 active
SMX units, corresponding to 384 (192 × 2) CUDA cores. Its
theoretical peak floating point performance is 663 GFLOPs.
The overall architecture of GK110 is shown in Figure 1. Each
of the GK110 SMX units, as shown in Figure 2, has 192 CUDA
cores, and each core has fully pipelined floating-point (IEEE
754-2008 compliant single and double precision with fused
multiply-add operation) and integer arithmetic logic units.
Both GTX-780 and GT-640 support OpenCL 1.2. OpenCL
programming model allows the user to define global and local
work sizes. Global work size is the total number of threads
to be executed. Assuming the thread to data point mapping
is designed in such way that each thread processes one data
point (also assuming input and output data rates are equal for
simplicity), the global work size is the total number of threads

Fig. 1: Full GK110 chip with 15 SMXs

to be executed, which is also equal to the total number of data
points (pixels, in our case) to be processed. On the other hand,
local work size is the total number of threads that belong in a
work-group. Threads in a work-group can be synchronized by
local and global memory fences and can efficiently exchange
information via local memory, which typically corresponds
to L1 cache. The idea behind work-groups is that a work-

Fig. 2: Kepler SMX with 192 cores

group corresponds to a chunk of threads that can execute
independent of the rest of the global work. Using our example
GPUs, each work-group is assigned to an SMX (Fig. 1) for
execution and each thread within a work-group is executed on
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Fig. 3: Image pyramid

one of 192 CUDA cores (Fig. 2) on that SMX. Since work-
groups do not wait for each other, the work-group to SMX
assignment is completely independent of the work-group order,
completion of a given work-group or the number of available
SMXs, providing scalability. This property will be clearly
demonstrated by our test results, where identical OpenCL
implementations (due to identical SMX structures) running on
GTX-780 and GT-640 will have scaled performance figures.
Note that the expected performance scaling is around 6× (2304
/ 384) since the algorithm under inspection consists of mostly
compute bound (number of operations per memory access is
high) kernels.

For our implementation, we started with the MATLAB
source code that is given as a reference in the original paper
which can be downloaded from [11]. MATLAB source was
rewritten in C/OpenCL where simple setup and frame capture
functionality was implemented in C and flow estimation related
functions were implemented directly in OpenCL and ported
to GPU. The mainframe of the implementations is based on
a classical pyramidal optical flow solution method. Initially,
pyramids of the two input images I0 and I1 are built in which
resolution decreases as level of the pyramid increases. The
pyramid structure for an input image is shown in Figure 3.
The image pyramids are built by applying a Gaussian low
pass filter followed by downsampling. Low pass filtering prior
to downsampling is required to avoid aliasing artifacts. The
details of the filter implementation is given in the following
section. Then the algorithm runs from the top level to the
lowest level using the resulting optical flow vector from one
level up. The implementation requires four major surfaces:

• u: optical flow vector’s x direction component, has the
same size as the input frame

• v: optical flow vector’s y direction component, has the
same size as the input frame

• w: auxiliary variable, has the same size as the input
frame

• p: auxiliary variable that stores x and y gradients for
u, v and w surfaces, has six times the size of the input
frame

The execution steps in our pyramidal implementation are based
on these variables and images The overall execution flow is as
follows:

Fig. 4: Flow vector pyramids

1) Initialize u, v, w, p zero. Run the algorithm at the
third level, which is the top level of the pyramid,
to obtain updated surfaces.

2) Upsample u, v, w, p by 2 and scale them by 2.
3) Run the the algorithm at second level with the scaled

and upsampled optical flow vector and auxiliary
surfaces to obtain updated surfaces.

4) Upsample u, v, w, p by 2 and scale them by 2.
5) Run the algorithm at third level with the scaled and

upsampled optical flow vector and auxiliary surfaces
to obtain updated surfaces.

6) Report the output optical flow vector surface as the
result.

Note that motion vectors are scaled by 2 to compensate for
changing resolution between pyramid levels. The flow vector
pyramids are shown in Figure 4. The execution flow in each
pyramid level is shown in Figure 5.

Fig. 5: Algorithm flow

A. Gaussian Filtering

The Gaussian filter that is used to produce the images at
upper levels of pyramid is a 5 × 5 2D separable filter. In
order to reduce computational complexity, we implemented
this 2D filtering operation as two consecutive 1D filtering
operations; first horizontal then vertical. The filter weights
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are [1, 4, 6, 4, 1]/16 in both directions. In these kernels local
memory buffer is used to increase the efficiency since in fil-
tering operation neighboring data points are used. In OpenCL
context, local memory can be interpreted as user controlled L1
cache where the user is responsible for designing the thread
mapping for reading pixel values from DRAM and writing into
the L1 memory. For both kernels 2D thread arrays are used
with a local work size of 64 × 4 (in horizontal and vertical
directions respectively).

B. Warping

The term image warping means that each pixel of the
source image mapped with its flow vector and written into
destination image [12]. Initially, texture units were considered
to implement warping. Available only for GPUs, texture hard-
ware inherently implements nearest neighborhood and bilinear
interpolation and provides 2D access optimized caching mech-
anism for efficient reuse of neighboring elements. However,
texture units operate on OpenCL image buffers, resulting in
additional surface copies from regular OpenCL buffers. As a
result, the final implementation uses regular OpenCL buffers
and implements the 2D interpolation calculations manually.
The warping kernel is implemented with a single kernel that
uses a 2D thread array with a local work size of 64× 4.

C. Iterations

After each warping step, optical flow iterations are executed
on the warped surfaces. An iteration is basically composed of
four steps:

1) Update p
2) Normalize p
3) Update u, v, w
4) Thresholding

For these surfaces, separate memory regions are allocated
at each pyramid level. Using same memory region for every
level of pyramid is much slower compared to using separate
memory regions. Moreover extra memory requirement is not
high with respect to total available global memory.

Software is configured in such a way that first and second
steps are implemented as one kernel and last two steps are
implemented as another kernel. Initially, all four steps were
merged into a single kernel. However, the last two steps (3,4)
cannot start execution before the first two steps (1,2) execute to
completion. This results in a local memory fence in the middle
of the merged kernel. Furthermore, the merged kernel requires
a larger number of resources (especially registers) to execute.
In the light of these observations and performance tests con-
ducted with the merged kernel, the final implementation was
based on the separated design that implements the first two
steps as one kernel (updateAndNormalizeP) and the last two
steps as another (updateFlowVectors).

1) Kernel updateAndNormalizeP: In this kernel p is up-
dated using derivatives of u, v, w and then p is normalized so
that every element’s absolute value is less than one.

Derivative operation can benefit from local memory buffer
(threads processing neighboring pixels need to read overlap-
ping pixels). Therefore we implemented this kernel using

local memory cache. For efficient DRAM bandwidth use
reads and writes were done as 4 wide float vectors. The
vector data type used in our application is float4 that is
composed of four floating point pixels. The second part of
this kernel is normalization which is not suitable for any major
optimization, except for DRAM bandwidth optimization which
is mostly taken care of by float4 read/writes. Each data
point is checked separately and normalized if necessary. The
updateAndNormalizeP kernel uses a 2D thread array with a
local work size of 32× 4.

2) updateFlowVectors: This kernel has two steps:

• Updating u, v, w using derivative of p

• Thresholding

This kernel is similar to updateAndNormalizeP kernel but
it is slightly more complex. In thresholding step, there are two
thresholds to compare. Each data point is checked separately
and necessary calculations are made. The updateFlowVectors
kernel uses a 2D thread array with a local work size of 32×4.

D. Assisting Kernels

Apart from these kernels that perform most of the calcu-
lations, there are some assisting kernels. These simple kernels
do not contribute to the main algorithm but simply assist the
execution flow:

• copyKernel: Copies one surface to another. Uses a 2D
thread array with a local work size of 32×4. All reads
and writes are performed in terms of float4.

• fillWithZerosKernel: Fills a surface with zeros. Uses
a 2D thread array with a local work size of 32 × 4.
All writes are performed in terms of float4.

• upsampleAndScale: Upsamples a surface by two and
scales with given value. Uses a 2D thread array with
a local work size of 32× 4. All reads and writes are
performed in terms of float4.

IV. RESULTS

The test setup consists of:

• Host: Intel Haswell Core i7 4770 CPU running at 3.9
GHz with 32 GB DDR3 DRAM

• Device-1: NVIDIA GTX-780 GPU running at 900
MHz with 3 GB GDDR5 DRAM (288.4 GB/s theo-
retical peak)

• Device-2: NVIDIA GT-640 GPU running at 900 MHz
with 2 GB DDR3 DRAM (28.5 GB/s theoretical peak)

• OpenCL: NVIDIA OpenCL 1.2 implementation.

Reference MATLAB code was run on the Host CPU and
the system was dedicated to testing with no other substantial
work executing during test runs. OpenCL kernels were run
on GTX-780 and GT-640 which were the only GPU type
OpenCL devices present on the system (apart from the in-
tegrated Intel HD 4600 GPU that comes with Core i7 4770
CPU). We implemented the algorithm using both single (32
bit) and double (64 bit) precision floating point numbers.

4



TABLE I: Per frame execution times with GT-640 with single
(32bit) precision

Resolution CPU GPU Speed up
576×384 N/A 951.3 ms N/A
640×480 N/A 1268.9 ms N/A

1280×960 N/A 3809.4 ms N/A

TABLE II: Per frame execution times with GT-640 with double
(64bit) precision

Resolution CPU GPU Speed up
576×384 107 sec 3889.3 ms 27×
640×480 156 sec 5224.8 ms 30×
1280×960 471 sec 15424.3 ms 31×

Since MATLAB is inherently double precision, we do not
report any single precision timing results for CPU/MATLAB
code. The benchmark results (worst -longest- execution times
in milliseconds over 1000 separate runs) obtained for the
RubberWhale sample from the Middlebury data set [7] are
given in Tables I, II, III and IV. Data transfers (from CPU to
GPU and vice versa) are included in the measured times. For
every pyramid level 10 warps are executed with 50 iterations
per warp. Constants are set as λ = 40, β = 0.01, τ = 1/

√
8

and ε = 0 (all in agreement with the distributed MATLAB
source that is available at [11]).

The visual optical flow results including the ground truth,
result of the original MATLAB code, double precision GPU
result, and single precision GPU result can be seen in Figures
6, 7, 8 and 9, respectively. Color coding used in these visuals
is based on representing the flow vector direction with hue
and vector magnitude with saturation. The input images and
the ground truth are downloaded from [3], where our specific
test input image is labeled as RubberWhale. As it can be seen
from the figures, single and double precision implementations
compute very similar results and match the single threaded
CPU implementation in terms of flow vector precision. For
the RubberWhale test sample, the average endpoint errors [8]
were measured as 0.143 for both double and single precision
implementations. We could not observe any endpoint error
differences between single and double precision implemen-
tations for other test samples (Dimetrodon, Grove2, Grove3,
Hdrangea, Urban2, Urban3) as well. In terms of per frame
execution time speed-up factors, GTX-780 achieved 298×
and GT-640 achieved 31× for 1280×960 input frames. Based
on our tests, flow vectors computed by the single preci-
sion implementation are comparable to the double precision
implementation. Furthermore, the improvement achieved by
the double precision implementation comes with increased
execution times.

The performance comparison of GTX-780 and GT-640 is
summarized in Tables V and VI, which present the per frame
execution times and the resulting performance scaling factors.
For the single precision implementation the performance scal-
ing is around the expected factor of 6. For the double precision
implementation, its around 9. The increasing difference in
performance is mainly due to 10× larger DRAM bandwidth
provided by GTX-780 (288 GB/s compared to 28.5 GB/s).

TABLE III: Per frame execution times with GTX-780 with
single (32bit) precision

Resolution CPU GPU Speed up
576×384 N/A 188.7 ms N/A
640×480 N/A 230.6 ms N/A

1280×960 N/A 528.9 ms N/A

TABLE IV: Per frame execution times with GTX-780 with
double (64bit) precision

Resolution CPU GPU Speed up
576×384 107 sec 459.4 ms 232×
640×480 156 sec 604.7 ms 257×
1280×960 471 sec 1579.1 ms 298×

TABLE V: Per frame execution times with GT-640 and GTX-
780 with single (32bit) precision

Resolution GTX-780 GT-640 Factor
576×384 188.7 ms 951.3 ms 5.0×
640×480 230.6 ms 1268.9 ms 5.5×
1280×960 528.9 ms 3809.4 ms 7.2×

TABLE VI: Per frame execution times with GT-640 and GTX-
780 with double (64bit) precision

Resolution GTX-780 GT-640 Factor
576×384 459.4 ms 3889.3 ms 8.5×
640×480 604.7 ms 5224.8 ms 8.6×

1280×960 1579.1 ms 15424.3 ms 9.7×

V. CONCLUSION

We presented a massively multi-threaded GPU implemen-
tation of the anisotropic Huber-L1 optical flow estimation
algorithm proposed in [6] using OpenCL framework. Overall
algorithm flow and GPU specific implementation details were
discussed and performance results were presented.

Based on our analysis and the performance tests of the
resulting OpenCL implementation, optical flow estimation
algorithm originally proposed in [6] was found to be a good
match for massively multi-threaded SIMD implementation.
Depending on the input image size, per frame execution
time speed-ups of 200-300× were observed. Single precision
implementation provided results that are comparable to double
precision implementation at lower per frame execution times.

Finally, we did not conduct any motion vector quality
studies to detect minimal warp and iteration numbers, which
have a direct impact on the overall per frame execution time.
As a result, we simply executed with excessive warp (10)
and iteration (50) numbers resulting in high execution times.
Depending on the motion vector quality required by a specific
processing block that will use the output of the optical flow
estimation block, the warp and iteration numbers can be
lowered resulting in much reduced per frame execution times.
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Fig. 6: Ground truth

Fig. 7: CPU output

ACKNOWLEDGMENT

This work has been partially supported by the Artemis JU
Project ALMARVI (Algorithms, Design Methods, and Many-
Core Execution Platform for Low-Power Massive Data-Rate
Video and Image Processing), Artemis GA 621439 [13] and
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