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Abstract—Designers of the upcoming digital-centric More-
than-Moore systems are lacking a common design and simulation
environment able to efficiently manage all the multi-disciplinary
aspects of its components of various nature that closely interact
with each other. A key to successful design and verification lies
in a SystemC-based virtual prototyping environment that is able
to simulate a complex heterogeneous system as a whole, for
which each component is described and solved using the most
appropriate Model of Computation (MoC).

In this paper, we present a new generic MoC-independent
elaboration scheme that aims at preparing a Virtual Prototype
(VP) for simulation. It requires to check the correct composition
of the system model through dimensional analysis, to explore the
model structure to identify involved MoC and interfaces between
MoCs, and to detect the underlying dependencies. Eventually,
information extracted from the exploration allow the instantiation
of MoC-specific solvers. To soundly handle the global model
execution with a Discrete Event (DE) kernel as the main solver,
synchronization mechanisms with master-slave semantics within
the model structure are implicitly deduced.

I. INTRODUCTION

Design engineers, who want to build tomorrow’s More-than-
Moore embedded systems, must learn to think, create, and
design differently than today. The embedded software plays
an important role in these digital-centric systems and must
be validated long before the physical circuit is available. In
this context, virtual prototyping at a high level of abstraction
as a mean to experiment innovative ideas, perform design
exploration and early verification of both functional and non-
functional aspects becomes a necessity. This is especially
true for systems featuring a tight coordination between the
computational and physical elements of different natures.
Such complex heterogeneous systems, which mix digital and
analog electronics as well as mechanical, thermal, optical, RF
domains, and software, can not anymore be built as the late
and hopefully right composition of intellectual properties.

As a consequence, Electronic Design Automation (EDA)
tooling must accordingly evolve with these new requirements
and even anticipate them. The challenges for simulation tools
are especially numerous, complex to solve, and intertwined.
These tools have to remain simple, robust, and accurate
while offering a good simulation performance and attracting
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designers with various backgrounds and proficiency levels.
Ultimately, the Holy Grail of heterogeneous simulation is
a monolithic, but extensible environment that offers to any
System on a Chip (SoC) designer an efficient way to simply
connect and efficiently simulate models coming from heteroge-
neous places. They should not have the need for fiddling with
simulation artefacts or the Models of Computation (MoCs)
intrinsic parameters used to describe the different models.
For these designers, whose goal is mainly the definition of
an executable specification of the system to be implemented
and who are at the very heart of the innovation process,
simulation accuracy is less important than simulation speed
and holistic consideration of all the system specifications.
In other words, first-order results are sufficient, provided
the embedded software can soundly run on the simulated
system involving different physical domains and experience
the environment’s reactions with the time constants proper to
these domains.

In essence, the simulation engine for such multi-disciplinary
virtual prototyping must exhibit the following properties. It has
to be digital-centric, because digital hardware and software
are at the heart of today’s and future heterogeneous systems.
Its kernel has to be monolithic, for the sake of performance.
It has to support the simulation of billions of digital cycles,
the booting of a complete operating system, the transmission
of wireless messages between RF transceivers, and manage
non-functional properties at different time scales. For this
reason, the overhead associated to the use of external tools and
related synchronization issues with approaches like Functional
Mockup Interface (FMI) [7] are often too high. The simulation
engine has to deal with complex hierarchical models that
reflect the system design and it has to check the system’s
correct composition of its potentially multi-disciplinary enti-
ties and the homogeneity of the resulting model equations.
Furthermore, the complexity of the model equations and
the variety of concerned physical domains require to put
dimensional analysis at the center of the modeling process.
Dimension checks have to lead to meaningful messages, which
help locating compilation, compositional, and causality errors.
The simulation engine also has to be flexible and ready for
extensions, i.e., it should be easy to add new MoCs for
specific application domains that integrate seamlessly with all
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other MoCs. This requires the definition of an Application
Programming Interface (API) that allows the addition of new
MoC without too much difficulty. It is based on a generic
recursive elaboration mechanism that helps defining an ex-
plicit synchronization scheme between compatible MoCs. The
simulation engine should also support the verification and
validation methodologies, such as the Universal Verification
Methodology (UVM) [1], that are more and more tightly
integrated into the design process.

Inspired by the work of the Ptolemy II [6] and based
on the proven SystemC [11] with its Analog/Mixed-Signal
(AMS) extensions [2], this paper presents the steps taken to
realize the pre-simulation elaboration, i.e., to build up the
appropriate C++ structures that extend the SystemC simulation
kernel to deal with the simulation of heterogeneous models.

The key idea of the presented elaboration scheme is to take
as a starting point the system model (composed of a hierarchy
of sub-models interconnected by ports and signals) and run
through it to identify a finite set of homogeneous regions, each
of which being handled by a specific model of computation.
During this search, performed both in depth and breadth, the
interfaces between these regions (identified by special ports
called converter ports) are determined, and a hierarchy of
interoperating MoCs is built up. This hierarchy is used to
express unequivocally the interactions between the different
MoCs and the associated solvers.

After a related work section that details the work of
Ptolemy II, SystemC extensions, and the existence of powerful
C++ libraries such as Boost Units, the main elaboration phases
of the framework SystemC Multi-Disciplinary Virtual Proto-
typing (SystemC MDVP) are presented: dimensional analysis,
MoC-oriented clustering, and recursive MoC-specific solver
instantiation. An outlook on the simulation phase concludes
the paper.

II. RELATED WORK

One of the pioneering works in the field of heterogeneous
systems simulation is the Ptolemy Classic [5] and its sequel,
Ptolemy II [6]. Ptolemy II is a proof of concept simulator,
which addresses the complex issue of modeling heterogeneity
in a hierarchy of connected entities. Ptolemy II divides a com-
plex model into a tree of nested sub-models. Each hierarchical
level is locally homogeneous. Ptolemy II mainly relies on the
concept of Actor to describe a computational component of the
system. A composite actor can be defined as a netlist of sub-
actors. Each local sub-model is managed by a specific and
well-defined Model of Computation, which actually defines
how computation and model solving are performed. MoCs
are implemented by means of Domains: Receivers, which
define the communication semantics, and Directors, which
define the execution order of actors; together, they define the
environment of actors. Directors are eventually responsible
for the instantiation of domain-specific receivers. Since the
whole environment is defined by the domain, actors represent
abstract functionalities that are reusable in many domains.
However, the implications of this flexibility can be tricky or

overwhelming for the end user. In addition to building the
netlist of components, the designer wishes to simulate, he also
has to explicitly build the composite actors to encapsulate
the subsystems, and he has to choose and instantiate the
correct directors with respect to the created hierarchy and
the simulated domains. These constraints raise two major
issues. First, it forces the user to fully apprehend the director’s
internals and the underlying simulator semantics. Second, the
explicit definition of the hierarchy results in a composite set
of system models and simulation-specific artefacts.

Besides Ptolemy, several solutions for the simulation of
heterogeneous systems have been presented during the last
decade. They mainly rely on SystemC [11], a Discrete
Event (DE) simulation kernel, which can be used to perform
rapid system prototyping at several levels of abstraction.
Based on SystemC, we can notice the important work of
SystemC-H [14] and SystemC-A [4]. Both extend the SystemC
kernel by modifying its internal structure, which limits porta-
bility and standard compliance. Another approach built upon
SystemC is HetSC [10], which major drawback is to not being
able to express continuous time. SystemC AMS extensions [2]
have been specifically developed to allow the simulation of
analog behaviors coupled with digital-centric systems. These
extensions have originally been implemented in the Fraun-
hofer SystemC-AMS proof-of-concept simulator [8]. They
have been successfully applied in communication, automotive,
and consumer electronics use cases with good simulation
performance and accuracy.

For the moment, though, it is rather difficult for design
teams to extend the current SystemC-AMS simulator with
other MoCs than the ones proposed. Neither does the Sys-
temC AMS 2.0 standard [2] define an API for this purpose nor
does the proof-of-concept simulator document its internal API.
To our knowledge, only two attempts have been published,
which add a Non-Linear Network (NLN) [16] and Bond Graph
(BG) MoC [13], respectively, by authors with deep knowledge
of the SystemC-AMS implementation. These MoCs rely on
internal APIs to integrate themselves without modifying the
latter. An analysis of the SystemC-AMS source code shows
that each MoC is required to fully handle its elaboration
once the SystemC port binding phase has been finished.
SystemC-AMS only provides a minimum support for this task
by providing a list of all instantiated modules belonging to a
certain MoC. It provides one synchronization mechanism used
by all the existing MoCs and no API is provided to define new
synchronization schemes between MoCs.

At last, the modeling of heterogeneous systems can be
very error prone from a physical perspective, since designers
from different disciplines use different measurement units and
scales. A major improvement towards heterogeneous simula-
tion was made with the integration of dimensional analysis
into SystemC AMS [12] through the use of Boost.Units li-
brary [15]. It allows to enhance models with the notion of
physical quantities, which avoids compositional errors.
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III. SYSTEMC MDVP

Already today, Systems on Chip (SoCs) represent a com-
position of different models of computation. The Figure 1
describes a generic SoC according to the present models of
computation that are used to describe and simulate the hetero-
geneous components. One can see that the SoC embeds digital
components (processor, memory, peripherals, etc.) as well as
components from other engineering domains: RF transceivers,
Micro-Electro-Mechanical Systems (MEMS), optical and bi-
ological sensor. This figure shows our vision of embedded
systems, which sets the digital part at the center of the system,
with other domains gravitating around it. It clearly illustrates
the hierarchical organization of the MoCs: the optical sensor
modeled by means of an optical MoC is itself encapsulated
in an analog model, that will in turn behave like a digital
component. To perform the holistic simulation from the digital
view point, the analog part must be simulated with an analog
solver but controlled, in terms of synchronization and time-
management, by the digital discrete event kernel. Similarly,
the optical part must be simulated with an optical solver but
this solver must execute under the supervision of the analog
MoC. This transitive interfacing scheme prevails in the whole
system and clearly explicits a MoC hierarchy with father-son
or master-slave relationships.

RF Proc MEMS

Analog
Memory

Peripheral Bio
Sensor

Optical
Sensor Soft

Figure 1. System on Chip as a set of interacting MoCs.

The key point of the SystemC MDVP approach is to define
all the principles, tools, and API functions that allow a model
sub-tree to behave as if it were a standard module of the MoC
it is instantiated in. Interfacing two MoCs means performing
time synchronization between the two solvers and translating
signal values from one MoC to another. The time synchro-
nization issues are part of the simulation and are addressed
at the end of the paper. When it comes to model parts that
are at the boundary of two MoCs, the designer should not be
faced with questions that are deeply linked to the simulation
infrastructure. Designers want to connect parts or third party
models coming from different sources and not address issues
such as the choice of the appropriate director or the setting of
an obscure simulation parameter. For the simplicity of use, the
translation of data values implies the use of converter ports.
For him, the modeling process must appear as if one part of
the port is in one MoC and the other one is in the other MoC.

When it comes to heterogeneous modeling, from the simu-
lator architect view point, the interaction between two models
of computation (heterogeneous entities) becomes more chal-
lenging. To make the SystemC MDVP framework flexible and

extendible, we choose to only consider MoC interactions by
master-slave semantics: in this relationship, a MoC commands
and the other obeys. These semantics allow a simple defi-
nition of the interaction between MoCs: the master always
imposes its view point on the slave. In the aim to perform a
seamless interaction between different models of computation,
it is required by the SystemC MDVP framework that the
slave MoC provides all the interaction mechanisms with the
master MoC, i.e., the slave adapts itself to comply with the
master semantics. Whatever the complexity of the sub-models
hierarchy, it has to appear as a single model from the master
view point, as shown in Figure 2.

MoC A

MoC B

Master

Slave

Figure 2. Interaction between two MoCs.

Each MoC has its own properties (abstraction of time, etc.),
which are part of the MoC semantics. From a programming
view point, this means that a slave MoC has to implement the
complete set of properties/callbacks defined in a master MoC
interface.

Being a master or a slave is not an exclusive state: a
MoC can simultaneously be the master of another MoCs and
the slave of a third MoC. While this approach may appear
very restrictive (a MoC can be managed by only one master
MoC), it allows to implicitly choose during the elaboration
the right set of interfacing mechanisms. That is in contrast to
Ptolemy II, where the designer has to explicitly add the right
interfacing mechanism himself (Directors). Another benefit,
compared to Ptolemy II, comes from the fact that it avoids
the explicit description of the simulation hierarchy concur-
rently with the model, cancelling error-prone intermingling of
simulation artefacts with the model description.

Those interactions must be defined within the MoC. Thus,
the available interactions are statically defined and the model
of computation will not be allowed to interact with a MoC that
is not part of the available interaction. We chose this approach,
because it allows a model of computation to be agnostic about
the existence of slave MoCs.

Inside a set of connected modules, a given MoC can interact
with only one master. It implies that in separated sets of
connected modules, a given model of computation can interact
with one master in one set and with another master in another
set.

The Figure 3 illustrates the authorized master-slave re-
lationships between MoCs within SystemC MDVP. These

3



interactions are valid for a set of connected modules. We
see that a master model of computation can simultaneously
interact with several slave models of computation since it is
not aware of their existence. It is important to notice that a
model of computation can not be its own master or slave, no
matter if other MoCs are in-between.

Master A

Slave B

Master A

Slave B

Slave C

Slave D

Master A

Slave C

Slave
Master

B

Figure 3. Authorized master-slave relations within the SystemC MDVP
framework.

The master-slave semantic that we defined within
SystemC MDVP to express the interaction between models
of computation, is a strong concept in our approach to the
heterogeneous system simulation. Stating that the slave model
of computation has to comply with its master interface (seam-
lessly from the master view) allows to see these relations-
interactions as an encapsulation. This approach is especially
well-suited in a hierarchical environment.

IV. SYSTEMC MDVP ELABORATION

Any system model is built from primitive modules (which
describe an atomic behavior) and instantiated modules, which
are interconnected together and prepared for simulation during
the elaboration phase. SystemC MDVP framework is built on
top of SystemC and, as such, can benefit from the regular
elaboration phase of the DE simulator kernel. To realize the
elaboration with multiple models of computation, we identify
three specific steps that need to be added to the standard
SystemC elaboration. These steps are detailed in the Figure 4.

Simulation
Composability

Phase I
Clustering Solver
Phase II Phase III

Elaboration

Checks Instantiation

Figure 4. SystemC MDVP additional elaboration phases.

Strictly speaking, the phase I is not performed during the
elaboration, as it is already realized during the compilation.
However, the composability check perfectly fits the intent of
the elaboration phase. This is why we decided to show this
step as part of the elaboration process. Both, phase II and

III are realized during the end_of_elaboration() callback of
SystemC, which guarantees that the flattening of the system
is complete (each primitive module has been identified and
directly or indirectly linked to a MoC). The phase II describes
the clustering step, where the system is being explored and
analyzed to extract relevant information to perform the simu-
lation. The phase III exploits the results of the previous phase
to setup all the solvers required to simulate the system.

A. Composability and Dimensional Analysis

The composability of a heterogeneous model has to be
checked as early as possible in the elaboration process so
that later phases can rely on a sane structure. Thus, the user
can be early informed about problems such as: connection
of module ports to the wrong channel, e.g., continuous-time
signals representing physical quantities are usually defined as
values of type double, which make them too generic and can
allow incorrect bindings of physical quantities belonging to
different domains, e.g., optical and electrical domains. Other
problems are: forwarding of parameter values to the wrong
parameter (due to the absence of named arguments in C++),
and inhomogeneous model equations. Most of these problems
can be detected by the compiler through static type checking
if the variables, ports, and channel types are more precisely
defined in the model sources so that they express the data
semantics associated to them.

The sound solution for integrating the therefore necessary
quantity and unit types as well as dimensional analysis into
SystemC AMS, which was presented in [12] can be also
applied to our SystemC MDVP framework as it relies on
the open Boost.Units library [15]. It is based on C++’s
flexible type System, which allows to implement quantity and
unit data types as template classes that support dimensional
analysis at compile time through template meta-programming.
The SystemC MDVP framework will ultimately provide full
support for using Boost.Units quantity data types in user
models and support the tracing of all kinds of signals. Au-
thors of MoCs for describing multi-disciplinary behavior are
encouraged to provide generic modeling primitives compatible
with the new types. The quantity data types prevent the inter-
connection of ports and channels of different nature and ensure
coherent model equations through compile-time dimensional
analysis. The hard-to-read compiler error messages due to the
complex template structure of the quantity data types can be
efficiently simplified through a filter program.

B. Recursive Clustering

The clustering algorithm represents the second stage of the
elaboration process (Figure 4, phase II). Its purpose is to ex-
plore the complete system to collect information and generate
appropriate simulation data structures by means of the creation
of a domain-based, hierarchical view of the system. In practice,
the clustering phase consists of analyzing the system top-level
model and its associated sub-models to identify a finite set of a
homogeneous regions in the design, called clusters. Clustering
aims at organizing these clusters in a cluster hierarchy and to
identify for each cluster the specific MoC it is associated to and
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its master. This way, the dependencies between the underlying
MoCs are clearly established, based on the previously detailed
master-slave semantics.

Clusters are built w.r.t the connectivity of the system pro-
vided by the designer. The notion of cluster encapsulates
into a single object/abstraction entity components associated
to the same MoC, which are actually connected together or
connected through slave components. Eventually, a cluster can
also encapsulate clusters belonging to other MoCs, provided
all the master-slave semantics are respected within the whole
hierarchy. This encapsulated cluster, which represents the ab-
straction of a slave MoC, is seen as a component of the master
MoC, and is hence encapsulated into the master’s cluster the
same way as primitive modules. A cluster is complete when no
more components (modules or sub-clusters) can be added to it
by connection or instantiation. It means that all the connected
modules and slave modules of the MoC associated to this
cluster have been analyzed and organized to represent the
subtree of the current cluster.

Applying the clustering algorithm w.r.t. the master-slave
semantics allows the creation of a tree of clusters, where each
cluster may only have one master (only one immediate higher
node in the tree). On the opposite, a cluster can be the master
of several sub-clusters (a node can have several immediate
lower nodes in the tree). As SystemC MDVP is built upon the
discrete event simulation kernel of SystemC, the root of this
cluster tree is always a cluster associated to the DE MoC.

The clustering mechanism is very similar to the Shift-
Reduce process in LR grammars [3]. During the exploration of
the system’s hierarchy, as the module (resp. the sub-cluster)
encountered belongs (resp. integrates itself) to the MoC in
the process of abstraction, a shift operation is performed.
When the cluster making is complete, a reduce operation is
accomplished to integrate the subtree as if it were a standard
module of the higher hierarchical level.

To facilitate the generation of this tree, all SystemC MDVP
modules derive from a global C++ class scm_moc_if (scm
stands for SystemC MDVP), and a list of all the primitive
modules instantiated in the system is built. Based on the con-
tent of this list, a set of primitive clusters is created with each
primitive module being encapsulated into its own cluster. This
set of primitive clusters represents the initial set of clusters to
be analyzed (hereafter referred as set_cl). Two other structures
are needed for port attributes, one indicating the visited status
of a port and the other defining its type (regular or converter
port). Algorithm 1 details the recursive clustering function,
which creates the cluster tree that represents the hierarchical
view of the system.

The contains_cluster() function (Algorithm 1,
line 9) is used to break the recursion, as it avoids to process
again clusters that have already been processed. If the analyzed
cluster is eligible for processing, it is removed from the set
of clusters (Algorithm 1, line 12). Then, each port of the
currently processed cluster is considered as a starting port to
find the boundaries of the cluster being built. Each processed
port is considered visited, to avoid endless loops (Algorithm 1,

1 structure Cluster
2 String moc;
3 String master_moc;
4 List<Module> moc_ifs;
5 List<Cluster> cls;
6 Solver s;
7 end
8 Function process_cluster(set_cl, cl, new_cl)

Data: set_cl, Set of Cluster to be analyzed.
Data: cl, Cluster to be analyzed.
Data: new_cl, Cluster to be built.

9 if not set_cl.contains_cluster(cl) then
10 return;
11 else
12 set_cl.remove_cluster(cl);
13 end if
14 foreach port p in the port list of cl do
15 if is_visited(p) then
16 continue;
17 end if
18 set_visited(p);
19 if is_converter_port(p) then
20 master = get_master(p);
21 check_master(new_cl, master);
22 set_master(new_cl, master);
23 new_cl.add_port(p);
24 continue;
25 end if
26 foreach port p_p connected to p do
27 if is_visited(p_p) then
28 continue;
29 end if
30 set_visited(p_p);
31 next_cl =

get_cluster_from_port(p_p);
32 if is_converter_port(p_p) then
33 sub_cl =

create_cluster(next_cl);
34 set_cl.add_cluster(sub_cl);
35 reset_attributes(p_p);
36 else
37 process_cluster(next_cl,

new_cl);
38 continue;
39 end if
40 end foreach
41 end foreach
42 new_cl.add_sub_cluster(cl);
43 end

Algorithm 1: Recursive function responsible for
the clustering.

lines 15-18). If the currently processed port happens to be
a converter port (Algorithm 1, line 19), the master cluster,
to which the port belongs to, is compared to the current
master of the cluster new_cl (Algorithm 1, line 21). A failing
comparison means that the cluster new_cl has two different
master MoCs, implying a clustering error as the master-slave
semantic rules are not respected. This situation leads to abort
the elaboration, providing to the end user relevant information
about the malformed design he tries to simulate. Otherwise,

5



MC2

DE
Modules

MoC A MoC B MoC C MoC D

Module

DE port

A port

B port

C port

A - DE converter port

D - C converter port

B - A converter port

C - B converter port B - DE converter port

MoC DE

MC4

MC1 MC3

MB1
MB3

MA1 MA2

MD1

MB2
MB4

MA4 MA3

MB5

MB6

Figure 5. Example of a complex heterogeneous system involving five
hierarchical levels.

MD1

MC4MC3MC2MC1
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CC1

CD1

CC2

CA1 CB3

MoC A

MoC B
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MoC D

Module

Cluster

DE DT CT

MoC DE

{{{

Figure 6. Clustering tree matching the complex heterogeneous system
example in Figure 5.

the valid converter port is added to the cluster new_cl.
If the port is not a converter port, a depth first traversal is

performed, i.e., all the ports connected to p are analyzed in
turn. One can notice that the clustering algorithm does not
involve the communication channel: SystemC MDVP ports
provide mechanisms to directly access to the set of ports
connected to the same channel. It allows to completely bypass
them in the algorithm.

The process performed on each connected port is similar
to the previous one (Algorithm 1, lines 27-30). This time, the
traversal is used to identify the boundaries (converter port) of
another slave MoC. For that purpose, a new empty cluster is
created and the process_cluster() function is applied
on it. When the built sub-cluster is complete (Algorithm 1,
line 33), it has to be added into set_cl (Algorithm 1, line 34)
to be processed later. To be encapsulated correctly, it must be
considered as a component of the current MoC. The purpose of
the reset_attributes() function (Algorithm 1, line 35)
is to reset the ports traversal attributes to false and to re-trigger
the analysis of the converter port, which has to be considered
this time as a regular port of the master MoC. If the port does
not belong to a boundary, a recursive call to analyze the cluster
corresponding to this port is done. When the exploration of
a cluster is complete, it is added as a sub-cluster to the new
cluster being created (Algorithm 1, line 42).

As an example, Figure 5 describes an abstract heterogeneous
system involving five different MoCs: A, B, C, D, and DE.
The master-slave relationships between them are defined as
follows: DEDE>BCT and DEDE>ADT >BCT >CCT >DCT

(with master>slave). The MoC B provides communication
mechanisms with MoC A and MoC DE through its converter
ports, so respectively do MoC C with MoC B and MoC D with

MoC C.
Applying the clustering algorithm to Figure 5 yields

Figure 6. The root of the tree represents the encapsulation
into SystemC (DE). In each cluster, one can notice a list of
primitive modules in the first row and a list of sub-clusters
on the second row. Cluster CB1 is composed of two primitive
modules (MB1 and MB2 associated to MoC B) and one sub-
cluster CC1 associated to the MoC C. From the MoC A view
point, the sub-cluster CB1 must appear as a MoC-A-compliant
module, i.e., it has to respect the semantics of MoC A.

This representation imposes to each level to respect the
semantics of the immediate parent level. Finally, this leads to
a simulatable system ruled by SystemC semantics and which
fits all the requirements for digital-centric systems.

C. Solver Instantiation and Simulation setup

This phase of the elaboration is performed once the clusters
hierarchy is built and once a pair of models of computation
(moc and master_moc) is associated to each cluster. Its
purpose is to finalize the creation of internal data struc-
tures required to support the semantics of simulation. In this
phase, as two types of objects (modules and solvers) are
manipulated using common functions, an abstract base class
scm_core::scm_moc_if is defined that allows the encapsulation
of these functions. This abstract class, as is shown in Figure 7,
can represent either modules or solvers. Modules are the prim-
itive blocks instantiated by the user, which belong to a MoC X,
and which implement a set of function prototypes defined by
the class scm_X::scm_module. Solvers are scm_X::scm_Y_solver

objects, automatically instantiated in a cluster during this
phase. These solvers perform the synchronization operations
of the cluster elements (primitive modules and sub-clusters)
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scm_A::scm_DE_solver

+ clone(): scm_moc_if
+ elaborate(): void

scm_B::scm_DE_solver

+ clone(): scm_moc_if
+ elaborate(): void

scm_B::scm_A_solver

+ clone(): scm_moc_if
+ elab_a1(): void

scm_C::scm_B_solver

+ clone(): scm_moc_if
+ elab_b1(): void

scm_D::scm_C_solver

+ clone(): sca_moc_if
+ fun_c1(): void

scm_A::scm_module

+ clone(): scm_moc_if
+ elab_a1(): void

scm_B::scm_module

+ clone(): scm_moc_if
+ elab_b1(): void

scm_C::scm_module

+ clone(): scm_moc_if
+ elab_c1(): void

scm_D::scm_module

+ clone(): scm_moc_if
+ elab_d1(): void

scm_A::scm_moc_if

+ clone(): scm_moc_if
+ elab_a1(): void

scm_B::scm_moc_if

+ clone(): scm_moc_if
+ elab_b1(): void

scm_C::scm_moc_if

+ clone(): scm_moc_if
+ elab_c1(): void

scm_D::scm_moc_if

+ clone(): scm_moc_if
+ elab_d1(): void

scm_DE::scm_moc_if

+ clone(): scm_moc_if
+ elaborate(): void

scm_core::scm_moc_if

+ clone(): scm_moc_if

Function elaborate() 
    foreach moc_if ∈ L do 
      elab_a1();
    end
    elaboration of this solver;
end

Function elaborate() 
    foreach moc_if ∈ L do 
      elab_b1();
    end
    elaboration of this solver;
end

Function elab_a1() 
    foreach moc_if ∈ L do 
      elab_b1();
    end
    elaboration of this solver;
end

Function elab_b1() 
    foreach moc_if ∈ L do 
      elab_c1();
    end
    elaboration of this solver;
end

Function fun_c1() 
    foreach moc_if ∈ L do 
      fun_d1();
    end
    elaboration of this solver;
end

L: list of MoC Interfaces of the current moc_if that is being elaborated.

Figure 7. Minimal class hierarchy defined for the example shown in Figure 6.

belonging to MoC X, according to the semantic rules imposed
by MoC Y.

As the simulation is supposed to be initiated by a DE
kernel, the scm_DE::scm_moc_if represents the base interface
to be respected during the addition of other MoCs. Three
steps are required in order to add a new MoC X. First,
the base class scm_X::scm_moc_if has to be defined, which
shall be respected by the modules belonging to a MoC X,
and shall be also implemented by the solvers that wish
to be executed within the context of MoC X. It has to
inherit from the abstract class scm_core::scm_moc_if. Second,
the base class scm_X::scm_module has to be defined, from
which derive the primitive blocks belonging to the MoC X
and which are defined by the user. This base class has to
inherit from the class scm_X::scm_moc_if. Third, the solver
scm_X::scm_Y_solver has to be defined, which derives from
the base class scm_Y::scm_moc_if of MoC Y with which it
wishes to communicate. When a new MoC is added, it can
interact with one or more of existing MoCs. Hence, several
solvers may be defined in the third step. An example is shown
in Figure 7, where two solvers are instantiated for MoC B:
scm_B::scm_DE_solver and scm_B::scm_A_solver, performing the
synchronization interactions with MoCs DE and A, respec-
tively.

Using the proposed encapsulation of functions and the
hierarchy of clusters provided by the second phase of the elab-
oration, two stages are performed: the instantiation of solvers
and the simulation setup (Figure 4, phase III). In the first
stage, based on the Prototype Creational Design Pattern [9],
a factory is implemented for the creation of the new solver
objects. This factory stores a dictionary of prototypes that
should be cloned for a cluster. The dictionary of prototypes

corresponds to a map containing a pair of MoCs <X,Y> and
the scm_X::scm_Y_solver that should be cloned and assigned to
a cluster belonging to MoC X, which will be executed within
the context of MoC Y. For the clusters hierarchy shown in
Figure 6, the dictionary contains the information summarized
in Table I.

Table I
DICTIONARY OF SOLVERS AVAILABLE FOR THE CLUSTERS HIERARCHY

SHOWN IN FIGURE 6.

<X,Y> Prototype to Clone
<A,DE> scm_A::scm_DE_solver

<B,DE> scm_B::scm_DE_solver

<B,A> scm_B::scm_A_solver

<C,B> scm_C::scm_B_solver

<D,C> scm_D::scm_C_solver

The recursive, bottom-up function proposed for the auto-
matic instantiation of solvers is shown in Algorithm 2. The
creation of these new solver objects during the algorithm exe-
cution is done by calling the find_and_clone() function
(Algorithm 2, line 9). This function is provided by the factory
and receives as parameters the MoC, the master MoC, and the
list of scm_core::scm_moc_if (modules and solvers) associated
to a cluster. The function is responsible for searching in
the dictionary of prototypes the pair of MoCs received, for
identifying the prototype to be cloned, and for calling the
clone() function that is implemented in the previously
identified prototype class. The clone() function creates a
new instance calling the constructor of the prototype class,
which also stores the list of modules/sub-solvers received as
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1 Function instantiate_solver(cl)
Data: Cluster cl.
Result: Solver s instantiated for cl.

2 foreach sub_cl in the clusters list of cl do
3 m = instantiate_solver(sub_cl);
4 add m in the moc_ifs list of the sub_cl ;
5 end foreach
6 if master_moc of cl is NULL then
7 return NULL;
8 end if
9 s =

find_and_clone(moc,master_moc,moc_ifs);
10 set the solver s in cl;
11 return s;
12 end

Algorithm 2: Recursive function proposed for the
solver instantiation.

third argument in the find_and_clone() function.
Once the solvers have been instantiated, the second stage is

performed. In order to elaborate and configure each module
and solver for simulation, the elaborate() function is
called for each sub-cluster contained in the root of the clusters
hierarchy. It is guaranteed that all the solvers instantiated
to those sub-clusters respect the context imposed by the
scm_DE::scm_moc_if base class. The call to the elaboration
functions defined for each MoC (elab_a1(), elab_b1(),
elab_c1() and elab_d1()) is automatically performed
in cascade thanks to the implementation mechanism detailed
in Figure 7. It is worth noting that during the elaboration of
a solver, each of its modules and sub-solvers are elaborated
before it is itself elaborated. At the end, all the structures,
modules and solvers are ready for simulation.

V. OUTLOOK ON SIMULATION

Clustering and MoC solver instantiation are bottom-up
processes that recursively build the hierarchical simulation
infrastructure and define the general simulator behavior from
the aggregation of MoC solver leaves. The simulation process
itself relies on a top-down prefix-order traversal of the same
infrastructure. Starting with the root solver, node-related local
simulation contexts (some input stimuli, a floor timestamp,
and a temporal horizon) are recursively propagated to each
node of the hierarchy. This depth-first traversal generally
implies shifting from a coarse representation of time to a
more continuous one, according to the MoCs present in the
hierarchy. Provided a node representing solver Y has received
from its master node solver X a local simulation context, solver
Y is allowed to perform its local simulation using its associated
solver and to generate appropriate local simulation contexts for
its subtree. The floor time stamp is the lower time boundary
Y starts simulating at, and the temporal horizon represents the
upper time limit. Each solver Y manages its own time scale and
advances at its own pace according to the temporal horizon
constraints imposed by its master solver X. Solver Y produces
simulation results that are directly converted and integrated
into solver X as solver X quantities.

VI. CONCLUSION

This paper addressed the requirements for building an effi-
cient simulation engine for multi-disciplinary virtual prototyp-
ing, as materialized in the SystemC Multi-Disciplinary Virtual
Prototyping (MDVP) framework. More precisely, the paper
focused on the elaboration task that consists in creating the
necessary information and C++ data structures for simulation.
The concept of master-slave to describe MoCs relationships,
allows to define a generic clustering, follow by a generic solver
instantiation. Eventually the simulation setup is performed. All
this elaboration process is performed in a MoC-independent
way.

The elaboration task is also important for properly detecting
inconsistencies in the composition of possibly heterogeneous
components, namely in the dimensions and units associated to
elements representing physical quantities and in the expected
master-slave MoC relations.

Hence, the SystemC MDVP framework can be enriched
with new MoCs without the need for modifying the elaboration
phase. Future work will be dedicated to the extension of the
simulation phase from the outlook provided in the Section V
to complete the development of the framework.
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