Multi-Domain Virtual Prototyping in a SystemC
SIL Framework: A Heating System Case Study

Nikolaos Tlieskou*T, Marijn Blom*T, Lou Somers*f, Michel Reniers* and Twan Basten*
*Eindhoven University of Technology, Eindhoven, The Netherlands
Email: nilieskou@tue.nl, m.blom@student.tue.nl, {1.j.a.m.somers, m.a.reniers, a.a.basten} @tue.nl
tOcé Technologies, Venlo, The Netherlands
Email: {nick.ilieskou, marijn.blom, lou.somers} @oce.com

Abstract—This paper presents a proof-of-concept for a mod-
ular SystemC SIL (Software-in-the-Loop) simulation environ-
ment, using a blackboard-like architecture. The proposed SIL
framework integrates embedded control software with simula-
tors developed in SystemC/SystemC-AMS or external tools, like
MATLAB. The environment has been validated by a heating
application for a professional printer, as example of an MDVP
(Multi-Domain Virtual Prototyping) application. Our goal is
to evaluate the use of SystemC/SystemC-AMS and to address
the challenges in developing multiple-domain prototypes and
blackboard-like SIL frameworks using this technology.

I. INTRODUCTION

The significance of time to market is constantly increasing
in many industries. Especially in the development of complex
high tech electromechanical systems, where the development
proceeds through a number of subsequent phases, each em-
bodied in a new prototype or lab model, it is important to
be able to perform quick iterations. Usually, such products
consist of elements that have to be designed and developed
simultaneously and then integrated. An example of such a
system is a professional printer, which contains electronics,
mechanical parts and embedded software for controlling and
interacting with actuators and sensors. To be able to get early
feedback on the performance of a new prototype, software
engineers have to develop and test embedded software before
the plant elements that it is governing are available.

In order to do that, there is a need for a simulation frame-
work that enables communication between simulators of the
plant elements and the embedded software controlling them.
The communication has to be synchronized and handled by the
framework. Moreover, each of the plant element simulators can
be a combination of models from multiple domains (chemistry,
physics, mechanics, etc.). Thus, it is also necessary to develop
multiple-domain virtual prototypes, which can be coupled with
the simulation framework.

Software-In-the-Loop (SIL) environments provide a frame-
work in which some or all plant elements are simulated.
Embedded software modules are integrated into a SIL envi-
ronment in order to test their functionality and explore their
limitations [1]. As a result, software engineers can identify
potential bugs and test software earlier in the development
process without waiting for mechanical or electronic parts to
be available.

978-1-4673-7311-1/15/$31.00 ©2015 IEEE

In order to implement a SIL framework, two elements
have to be determined. The first is a software architecture
that ensures the quality attributes of flexibility, modularity
and heterogeneous systems cooperation. A blackboard-like
architecture is a suitable candidate. It provides a way of
interaction between different modules, known as knowledge
sources, through a global database. Each knowledge source
is independent and can provide different expertise to the
system. The interaction between knowledge sources takes
place by writing to or reading values from the database. When
knowledge sources need to exchange data, one will write data
to the database and the other will consequently read that data
from the database. [2].

User features
Classes and
interfaces
defined in the
AMS language
standard

! I
| | AMS methodology-specific elements, elements for |
| | AMS design refinement, etc. !

I
I | Electrical

i | Linear Net-

I'| works (ELN)
I

Semantics
defined in the
AMS language
standard

Timed Data
Flow (TDF)

Linear Signal
Flow (LSF)

Linear DAE solver

\
1 ‘ Synchronization layer
I

Classes and interfaces
not defined in the AMS
language standard

I
‘ }} Enabling technology
I
I
|
I

SystemC Language Standard (IEEE Std 1666-2005) ‘ 3

Fig. 1: SystemC-AMS language architecture. From [3].

The second element of the SIL framework is a simulator for
handling and scheduling multiple-domain virtual prototypes,
which can be developed at different levels of abstraction.
SystemC is a suitable candidate to provide this element since
it has a discrete simulation kernel. SystemC extensions, like
SystemC-AMS, provide a variety of Models of Computation
(MoC) that enable the development of multiple-domain simu-
lators at a variety of abstraction levels [4].

In this paper, the SystemC extension for Analog and
Mixed-signal Systems (SystemC-AMS) is used as it provides
the proper MoCs for the target application. The SystemC-
AMS architecture builds upon and interacts with the existing
pure discrete SystemC environment (Figure 1) and uses both
discrete-time static non-linear and continuous-time dynamic
linear model abstractions to provide three MoCs, namely timed
data flow (TDF), linear signal flow (LSF) and electrical linear
networks (ELN) [4]. These MoCs or modelling formalisms
have different use cases as can be seen in Figure 2, but they



Model abstractions

Continuous-time
dynamic linear

Discrete-time
static non-linear

Non-conservative behaviour Conservative behaviour

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Timed Data Flow Linear Signal Flow Electrical Linear
(TDF) (LSF) Networks (ELN)

Fig. 2: SystemC-AMS modelling formalisms and their use
cases. Adapted from [3].

can be used alongside each other to describe different system
components.

The H-INCEPTION project [5] aims to provide a unified
design environment for Multiple-Domain Virtual Prototyping
(MDVP), and as partners of this project we present a proof
of concept for a SystemC SIL framework able to connect
multiple-domain physical system simulators and embedded
software. This is a flexible and modular simulation envi-
ronment for testing embedded control software for complex
multiple-domain systems. SystemC provides the backbone
for this implementation. The SIL framework is validated by
means of a printer heating model, which has to be precise
enough to test the embedded software, but does not need more
accuracy. Our goal is to evaluate and address the challenges
of using SystemC/SystemC-AMS for developing multiple-
domain prototypes and a blackboard-like SIL framework.

The rest of the paper is organized as follows. The next
section provides the heating system as motivating example
for a multiple-domain virtual prototype. Section III discusses
related work. Sections IV and V analyse the implementation of
the SIL framework and the heating system model. Challenges
encountered are presented in Section VI and conclusions and
future work in Section VIIL.

II. MOTIVATION EXAMPLE

In order to motivate a multiple-domain virtual prototyp-
ing process, we choose as example the heating system of
a professional printer. The modelled system simulates the
movement and temperatures of the paper sheets as well as the
temperature of some printer heating components. The heating
system (Figure 3) consists of four main components: the paper
path, the heatXchange unit (1), the preheater (2) and the toner
transfer belt (3) [6].

The heatXchange unit transfers heat from the hot paper at
the end of the paper path to the cold paper at the start of
the paper path. This is done by a thin foil that acts as a
conductor. After being heated up by the heatXchange unit,
the paper passes the preheater, a component with a metal piece
inside that heats up (due to a coil receiving power from the
power supply) and transfers heat to the paper. After passing the
preheater, the paper comes in contact with the toner transfer
belt. This is where the image is transferred to the paper from
the imaging drum (the cylinder labeled 4 in Figure 3). In

2

Fig. 3: Paper path and heating components.

order to transfer the image correctly, both the paper and the
toner transfer belt need to be at the correct temperature (more
precise: within a certain temperature range). The toner transfer
belt is heated by a halogen lamp (the heat-on-demand unit)
receiving power from the power supply. After merging with
the toner, the (still hot) paper will continue down the paper
path and reach the hot side of the heatXchange unit.

The heating system is modelled at an abstract level. This is
done for several reasons. The main goal is to evaluate and
identify potential challenges of modelling in SystemC and
SystemC-AMS, which does not require a detailed model. Also,
due to the modularity of the SIL framework, it is possible
to model a subsystem in higher detail and couple it with the
SIL framework separately, communicating the values of shared
variables through the database. Moreover, the purpose of the
simulator is to test the embedded software and the model does
not require an accuracy higher than the embedded software
needs.

III. RELATED WORK

Various Software-in-the-loop frameworks have been pro-
posed in literature [1], [7]-[13]. Depending on the target appli-
cation and requirements, different development methods have
been used. A SIL framework is commonly composed of simu-
lators and a SIL engine which consists of various components
such as a scheduling engine, a database, a synchronization
layer, and others, depending on the target application and its
complexity.

MATLAB/Simulink is a popular choice for developing
models of actuators, sensors, or plant elements and has been
used in many cases [7], [10]-[12]. SIL engines have been
developed in many different ways: [10], [11] implemented a
SIL engine as a .NET application, while [7] used MATLAB
and [12] wrapped to a MATLAB S-function together with a
real time OS. A discrete-event simulation engine named DEUS
was used in [9] and a custom C/C++ SIL implementation was
deployed in [8].

Unlike most of these implementations, we provide a modu-
lar SIL framework with which we can couple models from var-



ious modelling environments and languages. Our SIL frame-
work was developed in SystemC and it enhances modularity
by enabling the coupling of multi-domain models created with
different tool sets. In order to achieve the modular behaviour,
we were inspired by the functionality of Functional Mock-up
Interface (FMI) for Co-Simulation [14].

There is a large variety of modelling languages and simu-
lation tools available, both open source as well as commercial
packages, which are often designed specifically for particular
domains [15]-[18]. Most of them, however, are only suited for
a single domain, or cannot combine discrete-event simulators
with continuous-time simulators [19]-[23]. Most of them also
do not offer the ability to model a system with different levels
of abstraction.

IV. SIL ARCHITECTURE

In this section the proposed SIL architecture is discussed.
We first present the basic structure and requirements of the
SIL environment. Then we discuss scheduling of models and
framework elements. Scheduling is the process by which
we determine the execution order of the simulators and the
embedded control software, in order to correctly simulate the
behaviour of the real-world system. By scheduling the ele-
ments of the simulation correctly we ensure correct simulation
results. Finally, we explain the model structure and behaviour
that can be integrated into the SIL framework.

A. SIL structure and requirements

The proposed SystemC SIL framework supports integration
of SystemC, SystemC-AMS and external physical simulators.
The latter are simulators generated from different environ-
ments, like MATLAB. In order to embed external models and
embedded software, created outside of the SystemC environ-
ment, into a SystemC SIL framework, we transform them into
a Dynamic-link Library (DLL). External model coupling is
enabled through a custom-defined external interface.

[ Database ]

_____________

__________________________

': External
Models/ESW

_______________________________________

[ SystemC Scheduler }

Fig. 4: SystemC SIL framework structure.

Figure 4 illustrates the structure of the SystemC SIL frame-
work. The SystemC Scheduler, which is the bottom layer,
proceeds in discrete time instants and is responsible for calling
simulators and embedded software. For simplicity we refer to
both simulators and embedded software modules as model(s).
The execution order of models is defined in a configuration
file. This file contains information regarding which models will
take part in the simulation, their dependencies and frequencies.
In order for the SIL framework to correctly incorporate these

models, the framework has to adhere to the following require-
ments, which are explained below:

R1 The SIL should be able to handle sequential execution of
models.

R2 The SIL should be able to simulate the parallel execution
of independent models.

R3 The SIL should support models with independent fre-
quencies.

Sometimes a model has been split in two parts that are
executed sequentially within one time instance. This can be
because of model development by two different teams or
because of distinct models that give a more precise result in
combination with each other. R1 covers this case.

Figure 5 shows an example illustrating the reasons why
models have to execute in parallel (R2). The old output of
model A is the input of model B and C for any time instance.
All of them have to execute at the same time. In reality,
models A, B and C have to execute in parallel. However,
SystemC serializes parallel execution by updating the signal
values in a later time. Because the SIL framework is based
on the blackboard architecture, models that execute in parallel
do not communicate directly through signals but through the
database. The SIL framework has to ensure that model A will
not feed models B and C with a new value of X2 at the same
time instance. To ensure correct results, all the models have
to use the old input values.

X2 X3 X4
A B C

X1 X2 X2

Fig. 5: Possible dependency between models.

To achieve such behaviour, each model is executed in two
distinct phases. In the first phase, a model reads its input
variables. In the second phase, the model executes and outputs
the generated values. For the example illustrated in Figure
5, models A, B and C first have to read their inputs and
then execute and write their outputs. The order in which the
models will read or execute-write is arbitrary for both phases.
In order to achieve correct behaviour, we place models with
such dependencies or models that have the same frequency in
the same group. Groups are specified in the configuration file.

Finally, R3 is a crucial requirement for a complex system
simulation environment with multiple models. In such an
enviroment each entity may have its own frequency according
to its needs. For instance, an embedded control software
module might be called every 1ms, while a slow mechanical
part can be called every 100ms.

As mentioned before, plant elements have to communicate
with each other or with embedded software modules. Our SIL
framework enables model communication through a database



according to the blackboard architecture. Figure 4 shows at the
top the database which is responsible for interaction between
models. In order for a model to read and write values to the
database, an interface has been implemented by means of a
SystemC module DB_i, which has access to the database and
is responsible for providing simulators with data and writing
back their outputs. Each model is linked bidirectional to a
DB_i instance through two ports of a custom data structure
<packet_type>. We refer to these ports as db_in and db_out
on both the DB_i side and the model side. The <packet_type>
is a map data structure between a double variable and a
string representing the name of the variable. It also includes
additional information such as the action a particular model
wants to perform on the database, like read or write. The DB_i
modules are sensitive to their input: they will execute when
input is available on the db_in port.

B. Scheduling in SIL

The SIL framework uses the SystemC scheduler to schedule
the execution of the models. The configuration file is parsed
before the simulation starts. The information extracted from
the configuration file, i.e. model dependencies and frequencies,
is used to set up the simulation environment in such a way
that the SystemC scheduler will call the models in the correct
execution order. For each model a clock is created. This clock
is linked to the respective model. The structure of the clock
is the following:

Clock(Period, Delay)

Period is used for calling each model at the correct time
instance, while the Delay attribute takes care of sequential
dependencies (R1). Assume that a number of models have to
be executed in the same time instance in a sequential fashion.
The SystemC scheduler will execute them in an arbitrary order.
To force a specific execution order, we introduce very small
delays between the execution of these models and thus achieve
the desired sequential execution order. To keep Delay small,
we define it as three orders of magnitude smaller than the
smallest period. Suppose we have models X and Y with the
same period and a sequential dependency. Model Y will follow
X after an insignificant amount of time, equal to the Delay
attribute. As example, consider the following configuration:

GroupO: A,B,C Period: Ims
Groupl : D,E Period: 3ms
Group2: H Period: 3ms
Group600: P,Q,R Period: yms

The group numbers represent the delay attribute. We assume
that Ims is the smallest period. At t = 3ms models A, B and C
will execute in an arbitrary order, at 3,001ms models D and E
will execute, at 3.002ms model H will execute, and so on. This
simulates the sequential execution of these groups at 3ms. All
these models are calculating values for t = 3ms, ignoring the
execution delay.

If there are many groups, the delay used to simulate se-
quential execution can become relatively large. In the example
the smallest period is 1ms and the number of groups is 601.
The delay for the last group is 60% of the smallest period.
However, the results are still correct since the models in
Group600 execute as if they were called without the additional
delay. If the number of groups is larger than 1000, the delay
should be set to a value that is more than three orders of
magnitude smaller than the smallest period.

Bear in mind that the configuration file is responsible for a
feasible scheduling. The SystemC scheduler, with the help of
the configuration file, will call the models in the correct order.
This is ensured by first properly creating modules related to
models and then linking them to SIL related modules, such as
DB_i.

The SIL framework supports three categories of models:
SystemC, AMS, and external simulators or embedded control
software modules in a DLL form. In the following we explain
how these three categories are structured. Each model has the
same behaviour, as can be seen in Figure 6. They start with
a reading phase, in which their input variables are requested
from the database. During this phase they fill a <Packet_type>
structure with the data they intend to read and then they output
them to the port which is connected to their DB_i instance.
Then they wait until their requested data are available. After
the DB_i instance delivers the data, the models proceed to the
execute-write phase during which they execute and then output
the results through the <Packet_type> structure towards their
DB_i instance. All model entities are sensitive to a unique
clock and to the db_in port. The former is used to trigger
a model in the first delta cycle of a time instance. A delta
cycle is a step inside a particular simulation time instance. A
simulation time instance can have one or more delta cycles
[24].

Model
g o
g m
@ Tnitialize packet_type Read st.runturefrumthe 2z
-& structure input port E
[ =2
c Request data from the S
§ =) |2
g =
= [
Update structure —
=
Q
3
-
-
(0]
=)
@
Read datafrom the
v input port
3
Z E S
o 3
2 5
= Read structure from the ')
3 input port %
& Write data to i o
g packet_type structure - -
wn Write data to the DB o
-
-~ =
Output structure L [0
)
] =)

Fig. 6: Flow chart of model and DB_i modules.



TABLE I: Example of SystemC execution queue.

Delta Cycle | Module Description

1 A Module A request to read
1 B Module B request to read
2 DB_ia DB_ia sends data to A

= 2 DB_ib DB_ib sends data to B

Il 3 A A gets data, executes and request to write
3 B B gets data, executes and request to write
4 DB_ia DB_ia writes data from A
4 DB_ib DB_ib writes data from B

To make the scheduler functionality more clear, we consider
the following example. Table I illustrates the execution order
of two models A and B that are in the same group and thus
have the same period. At time ¢; the SystemC scheduler inserts
models A and B in the execution queue. During the execution
of the first model (A), a request will be sent towards DB_ia and
thus DB_ia will be placed in the execution queue for the next
delta cycle. The same will happen for DB_ib when model B
executes. During the second delta cycle, DB_ia and DB_ib will
execute to serve the read requests from A and B. The outcome
of their execution gives the values of the requested variables
back to the models. Because both A and B are sensitive to
their In_db port they will be placed in the execution queue
again. During the third delta cycle, A and B will read the
variables, execute, and write their results to db_out, causing
the execution of the DB_i instances to be scheduled for the
next delta cycle.

C. AMS and SystemC models

AMS and SystemC models are coupled to the SIL frame-
work with a generic adapter as presented in Figure 7. The
adapter is responsible for providing communication between
the database and the model. It uses the In_db and Out_db ports
to communicate with a DB_i instance. It also provides the two
phase functionality of models, i.e. the read and execute-write
phases. The adapter is sensitive to the the In_db and to the On
port, which is connected to the clock that triggers the model.
It has n signals towards the model, where n is the number of
inputs plus the number of outputs of the model.

n Adapter n Adapier

CLK_model

In/Out Signals In/Out Signals

AMS_Model SystemC_Model

Fig. 7: SystemC/AMS models and adapters basic block dia-
gram. An AMS_Model uses converter ports.

In order to integrate an AMS model into the SIL framework,
we need to create a SystemC hierarchical module that contains
an AMS module cluster, which represents the actual simulator.

We refer to hierarchical modules that contain AMS clusters
as AMS_Models. Because an AMS_Model is a continuous
model, it needs to have converter ports to convert discrete
signals coming from and going to the adapter. The modules
inside an AMS_Model execute based on a schedule which is
automatically generated by the AMS scheduler based on the
set time step of the modules.

The adapter feeds the AMS_Model with data and then
it reads the output of the AMS_Model at the same time
instance. This input data will be processed by the AMS_Model
at the next trigger time, while the output data read by the
AMS_Adapter is the result from the previous trigger time.
Trigger time refers to the time instance at which a model
is called. Physical attributes like position or speed cannot
change instantaneously, and the SIL framework is using AMS
to model physical systems. Consequently, the fact that values
calculated by the AMS_Model are based on past input values
does not result in incorrect output data.

SystemC models are also coupled to the SIL framework
using an adapter. A SystemC model is a hierarchical Sys-
temC module containing interconnected discrete modules. In
Figure 7 we refer to this model as SystemC_Model. The
SystemC_Model can be triggered by different events. One of
the possibilities is triggering by a clock. If this is the case,
then all clock-triggered modules inside the hierarchical module
have to be triggered by the same clock and thus have the
same period. In case a SystemC model has modules that are
triggered by clocks with different periods, they have to be
grouped in different hierarchical modules.

D. External models / embedded software

A DLL entity uses a DLL_Adapter to connect to the SIL
framework in a modular way. Figure 8 shows the basic block
diagram of a DLL_Adapter. The DLL_Adapter is responsible
for the communication with the database through the DB_i
module, the implementation of the read-execute-write func-
tionality and is triggered by the On and In_db input ports.
The communication between the DLL_Adapter and the DLL
is achieved using an external SIL interface.

= 5[] on tn_db
DLL_Adapter Out_db

External SIL interface

External SIL interface

DLL

Fig. 8: DLL model basic block diagram.

Summarizing, the SIL framework can integrate plant el-
ement simulators developed in SystemC, SystemC-AMS, or
external tools like MATLAB with embedded control software.
We have chosen a blackboard-like architecture, where models
communicate through a database, because of the modularity



HeatXchange

Tux Prx_p
L
‘ Paper path }—»‘ Paper sink ‘

v /PH,,, Tpy  Trrp Prrop

,,,,,,,,,,,,,, ‘ /
embedded software [ Preheater |
\

P_division_signal Ppy

‘ Toner transfer belt

\ Prrp

Fig. 9: Abstracted heating system

and flexibility it offers. The execution order and the dependen-
cies of the models are defined in a configuration file which is
used to properly set up models and SIL framework elements,
like DB_i, so that a correct scheduling can be achieved.

V. HEATING SYSTEM MODELLING

In this section the heating system model is discussed.
We explain the governing equations, discuss the control, and
address constants and values. The heating system is modelled
at a high abstraction level. This, and the non-linear behavior in
the model’s equations, makes the TDF MoC a suitable choice
as modeling formalism.

A. Abstracted heat system model

The heating system is modelled with several modules (Fig-
ure 9). The Paper generator module signals the Paper path
module every time a new sheet of paper is put into the system.
The paper path module contains the position and temperature
values for every sheet of paper in the system. The position
of the sheets along the paper path is governed by the simple
formula & = v, where v is a parameter sent by the embedded
software. The embedded software also sends a signal to the
power module that determines how much power is sent to the
preheater module and how much is sent to the foner transfer
belt module. The preheater module receives two signals: the
amount of power added to the preheater and the amount
of power absorbed by the paper path. It sends its current
temperature to the paper path module. The physical preheater
element has a heat capacity C'py, will heat up when power
is supplied to the element and will cool down due to heat
transfer to the environment and paper. The toner transfer belt
is modelled in the same way as the preheater, but with heat
capacity C'rrp. The heatXchange unit receives the amount of
power drawn or added by the paper path and sends out its
temperature to the paper path. The thin foil is modelled as an
object with a small heat capacity Cyx. Finally, if a sheet of
paper leaves the paper path, the paper path module sends a
signal to the paper sink module.

B. Control

The embedded software is responsible for the power man-
agement and the speed control of the paper path. In our ab-
stracted model of the heating system, that is intended as proof

of concept of our SIL architecture, the embedded software
is not used for providing a proper control of the heating
system. It is simply in place to test the functionality the SIL
framework and the heating system model. The implemented
control switches the power supply between the preheater and
the toner transfer belt with a constant frequency fswitching-
The speed is set to a constant 0.5m/s.

C. Temperature equations

All components are modelled to be of uniform temperature.
The temperature of the preheater is governed by Equation 1
where Tpy [°C] is the temperature of the preheater, Cpy
[J/°C] is the heat capacity of the preheater, npy [-] is the
efficiency, Ppy [W] is the power added to the preheater, ke,
[W/°C] is the heat transfer coefficient between the system
components and the environment, 7,,, [°C] is the environ-
ment temperature and Ppy _, [W] is the power transferred to
the paper path.

. 1
Tpy = T(UPH - Ppy — keno (TP — Tenv) — Pru_p) (1)
PH
The temperature of the toner transfer belt is governed by
Equation 2, which is very similar to Equation 1.

Trrp = Ci(nTTB'PTTB_kenv(TTTB_Tenv>_PTTB_p)
TTB
2
Equation 3 governs the temperature of the heatXchange unit.
This equation is similar to Equations 1 and 2, but without the
added power from the power supply.
1

Tux = =——
Cpu

(_ken,u(THX - Tenv) - PHX_p) (3)

The temperature of the paper is governed by Equation 4. The
paper sheets are considered to have a uniform temperature.

. 1
T —

Pi =g (Ppr i+ Prx i+ Prrei—kenv(Tpi—Tenv)) (4)
P

In this equation T}, ; [°C] is the temperature of paper sheet i,
Cp [J/°C] is the heat capacity of a single sheet of paper, Ppy ;
[W] is the power added to sheet ¢ from the preheater, Pyx ;
[W] is the power added to sheet ¢ from the heatXchange unit
and P77, [W] is the power added to sheet ¢ from the toner
transfer belt.

Equation 5 is used to calculate the power added from the
preheater used in Equation 4.

Ppyi=hpy - Apui- (Tpuy —Tpi) (5)

Here, hpy is the conductivity [W/m2°C] between the pre-
heater and the paper and App ; is the contact area between
the preheater and sheet ¢. This area is calculated with Equation
6 if d, < dpy or Equation 7 if d, > dpy, where d, is the
paper width and dpgy is the width of the preheater. These
formulas can easily be deduced from Figure 10.



TpH \ o
!

’ Preheater

— A —

’ Paper sheet ‘
d, [ N

Fig. 10: Paper sheet passing under the preheater

Apg,i =
0, if o; <apy
i — TPH, if zpy <2; <xpy+dp
b q dos if py +dp <m <apy+dpy
dp —xi +wpy +dpy, i zpy+dpy <z <zpy+dpu +dp
0, if ; > zpy +dpy + dp
(6)
ApH,i =
0, if o, <zpy
T, — TPH, if 2py <a; <xpy +dpy
L dpm, if xpy +dpy <ai <apy +dp

dp —z; +zpy +dpy, if zpg+dp <z <zpy +dpy +dp
0, if z; >xzpy +dpy +dp
(N
In these equations, x; is the position of paper sheet ¢, xpy is
the position of the preheater, d,, and [ are the width and length
of the paper sheets respectively and dpp is the width of the
preheater.

The total power drawn from the preheater by the paper
sheets is simply Ppy , = Z:.L:l Ppy i, where n is the total
number of paper sheets in the paper path.

The heatXchange unit and toner transfer belt are modelled
in the same way as the preheater, with the exception that the
heatXchanger unit has two separate positions at which it makes
contact with the paper and has no added heat from the power
supply.

All values for constants and coefficients are determined by
taking reasonable estimates from real world examples.

VI. SYSTEMC MODELLING AND EVALUATION

In this section we address the challenges we encountered
during the implementation of the SIL framework. We also
discuss the advantages and the disadvantages of using Sys-
temC in the context of this paper. Finally, challenges related
to developing multiple-domain virtual prototypes using the
SystemC-AMS extension are presented.

A. SIL framework challenges

We use a blackboard-like architecture for the SIL simulation
framework and the greatest challenge was to use the SystemC
scheduler in accordance with our requirements and in combi-
nation with the basic structure elements of the architecture, e.g.

the database. In the SystemC environment, elaboration is the
phase before the simulation starts. It involves the connectivity
and the initialization of the data structures [25]. In order
to correctly schedule model executions, we implemented a
smart elaboration phase which introduced additional delays
during the simulation. In particular, to satisfy requirement
R2 we had to divide model execution in two phases: a
read phase and an execute-write phase. After each phase, a
DB_i instance provides or stores data from/to the database. A
pure SystemC implementation could avoid all these additional
steps. However, having a blackboard-like architecture has its
advantages. It has a centralized data storage which enables us
to have an overview of the values of the simulation variables at
any time and use this data for other functions, like visualization
of the whole system. Without the database, it would be more
difficult to extract useful information from the framework,
because SystemC works with distributed data and the useful
data would be located in signals which connect all models of
the simulation.

Moreover, the blackboard-like architecture provides the
modularity quality attribute for the SIL environment, as inte-
grating a new model with our framework is easy because we
just have to connect the new model with a new DB_i instance.
Implementing this in a SystemC oriented architecture would
be more difficult as the model would have to be connected
with one or more other models.

To summarize, the combination of the blackboard architec-
ture and SystemC was a choice which is a tradeoff between
SystemC capabilities, like MDVP, performance and modu-
larity. As mentioned above, the greatest challenge was to
schedule the models in accordance with the correct execution
order. This difficulty resulted in a small performance penalty.

B. SystemC language evaluation

SystemC provides adequate documentation. However, it
requires good programming skills to develop models of plant
elements. This fact may cause difficulties to people from
different domains such as electrical engineering, mechanical
engineering or even physics that have to develop models
which will be integrated into the SIL. Another disadvantage of
SystemC is performance. Although our performance penalty
was caused by to the blackboard-like architecture, SystemC
could be much more efficient if it would offer real parallel
execution of modules.

On the other hand, SystemC provides a lot of abstraction
levels. It is possible to develop models from the register
transfer level to transaction level modeling and hence pro-
vide abstract models depending on the requirements of the
simulation. SystemC also provides an event based scheduler
that fits the general needs of a general implementation of a
SIL. SystemC is an open source language with increasing
popularity. Also, the SystemC-AMS extension and the MDVP
framework offer the ability to model multiple-domain systems
and thus are a perfect match for model development for the
SIL framework. Furthermore, SystemC-AMS is an extension
of SystemC and as a result one can develop all models and



the SIL framework in the same language. More precisely,
SystemC and its scheduler can be used for developing the
SIL framework, and SystemC and SystemC-AMS can be
used for developing multiple-domain virtual prototypes. This
leads to a simple SIL framework structure including one main
technology, i.e. SystemC. By using just one language we can
also avoid coupling between MATLAB and C-like simulators.
Consequently, there is no need for any external interface as all
the models can, in principle, be developed inside the MDVP
framework and the embedded software can be written in plain
C++ and easily integrated into a SystemC environment.

C. SystemC-AMS modelling challenges

1) Interpolation: Contrary to Simulink, the SystemC-AMS
MoCs handle incoming signals as continuous signals, even if
they come from a discrete-event module. The SystemC-AMS
modules will interpolate the input signal between the samples
taken at each time step. This means that if one would send
samples representing a block signal from a SystemC discrete
event module to a TDF module, the TDF module will not
interpret this as a block signal, but rather as a sawtooth signal.
Of course, this depends on the time step and the length of the
block signal. An example of this is illustrated in Figures 11
and 12. The red marks represent the input signal samples as
provided to the system representing a block signal. The green
and blue lines represent the signal as it is interpreted by the
Simulink and SystemC-AMS system respectively.

1 —— SystemC-AMS
Simulink
= X Samples
T 05 .
2
©n
0
| | | | | | | | |

0 05 1 5 2 25 3 35 4 45 5

timels]

Fig. 11: The sampled block signal as interpreted by SystemC-
AMS and Simulink with a low sampling rate.

T T . . .
1+ KK — SystemC-AMS
Simulink
o X Samples
T oo05f |
D
n
O x >\( | | | x >\( | | x >\(
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
timels]

Fig. 12: The sampled block signal as interpreted by SystemC-
AMS and Simulink with a higher sampling rate.

2) Cyclic dependencies: The heating system model has
several cyclic dependencies in the equations. The paper path
module has an input signal coming from the preheater module,
which in turn has an input signal that originates at the paper
path module. The same holds for the heatXchanger module
and the toner transfer belt module, which both have cyclic
dependencies with the paper path module. Cyclic dependencies
do not cause problems with Simulink. This is because it
uses the value from the previous time step for each signal.
SystemC-AMS however, handles these dependencies differ-
ently.

If two modules are connected with a single signal, SystemC-
AMS will first execute the first module and then use the value
that module sends over the signal for the execution of the
second module. This means that the execution of the second
module can only start after the execution of the first module
has finished. If there is a cyclic dependency, both modules will
be waiting for each other. In order for the SystemC scheduler
to be able to calculate an execution schedule for all connected
modules, a delay has to be implemented for one of the signals
in each cyclic dependency.

For the first execution, SystemC-AMS only needs an initial
value for the signal on which the delay is implemented,
whereas Simulink requires an initial value for each signal.
After the first execution, all modules will have calculated a
value for their respective outgoing signals, and therefore all
incoming signals will have values assigned to them for the
second execution.

3) Differential equations: Each modelling language offers
different ways to implement the differential equations govern-
ing the heating system. TDF supports the use of single-input
single-output state-space equations. These equations must have
the form of the following equation system:

dz(tt) = A s(t)+ B a(t — delay) )
y(t) =C-s(t) + D - z(t — delay) )

where s(t) is the state vector, x(¢) is the input vector, delay
is the continuous time delay in seconds applied to the values
available at the input, and y(t) is the output vector. A is an
n-by-n matrix, where n is the number of states, B is an n-by-
m matrix, where m is the number of inputs, C is an r-by-n
matrix, where 7 is the number of outputs and D is an r-by-m
matrix.

As an example, the matrices for the state-space equation
governing the temperature of a paper sheet are given below.
These matrices are found by rewriting the differential equation
for the paper temperature:

. 1
Tp,i = 5(PPH,i“I“PHX,i*"PTTB,i*kenv(Tp,i*Tenv)) (10)
p

The state vector is the temperature of the paper sheet:

s(t) = [Tp.i] (11)



The input vector has the temperature of the toner transfer
belt, preheater, heatXchange unit and environment as elements.

Trrp
(12)

The matrices then become:

A — |:_kenv+hTTB'ATTB(wi)"!‘hPH'APH(Ii)'f‘hHX'AHX($7'):| (13)

B = |:h’1"l'B'ATTB($i) hpu-Apu(xi)  hox-Apx(®i)  keno
B Cp Cp Cp Cp
(14)
C=[1] (15)
D= [0 0 0 0] (16)

As can be seen in Equation 13 and 14, matrices A and B are
not constant, but dependent on the position of the paper sheets.
Since this position changes constantly, the matrices have to be
updated every time step.

The state-space equation solver, however, assumes the ma-
trices to be constant. This means that the input vector for the
state-space equation is interpolated (see Section VI-Cl1), but
the values for the matrix elements are not. This can cause a
difference in accuracy, but only if the time step is large.

VII. CONCLUSIONS & FUTURE WORK

We presented a proof-of-concept for a modular SIL sim-
ulation environment in SystemC in which we can integrate
SystemC, SystemC-AMS, and external simulators of plant
elements with embedded software. The main challenge of the
SystemC SIL framework was to use the SystemC scheduler
in compliance with our requirements. In order to test the SIL
functionality we developed a model of a heating system using
SystemC-AMS.

We discussed the challenges of developing a multiple-
domain virtual prototype and a SIL framework using
SystemC/SystemC-AMS. Moreover, we illustrated the advan-
tages and disadvantages of these languages.

We intend to continue working on the MDVP framework.
The TDF modules related with the heating system model will
be reconstructed in a generic way so that they can be reused by
developers that want to develop similar simulations in the same
or a different context. We intend to contribute to the MDVP
library by providing basic infrastructure for heating system
models. We will also investigate different SIL architectures
that depend only on the SystemC capabilities. We predict that
such an architecture will provide a better performance because
the overhead of a blackboard architecture is avoided.

REFERENCES

[11 S. Han, S. Choi, W. H. Kwon, Real-Time Software-in-the-Loop Sim-
ulation for Control Education. Int. Journal of Innovative Computing
Information and Control Vol. 7, Number 11, 2011. pp. 6369-6382.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern-
Oriented Software Architecture, Vol. 1, A System of Patterns. Wiley,
1995.

[3]

[4]
[5]
[6]
[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

SystemC AMS extensions Users Guide, In Open SystemC Initia-
tive (OSCI) SystemC AMS extensions 1.0. Last accessed from
www.accellera.org on March 2015.

A. Banerjee, B. Sur, SystemC and SystemC-AMS in Practice. Springer,
2013.

Catrene (CA701) H-Inception: https://www-soc.lip6.fr/trac/hinception.
Last accessed March 2015.

C. Cochior, Model-Based Control for Professional Printing Systems.
PhD thesis, Eindhoven University of Technology, 2014.

M. Zoppi, C. Cervone, G. Tiso, F. Vasca, Software in the loop model
and decoupling control for dual clutch automotive transmissions. 3rd
Int. Conf. on Systems and Control, 2013. pp. 349-454.

R. C. B. Sampaio, M. Becker, A. A. G. Siqueira, L. W. Freschi, M. P.
Montanher, Optimal Hoo Controller on the Stability of MAVs in a Novel
Software-in-the-Loop Control Platform. IEEE Int. Conf. on Industrial
Technology (ICIT), 2013. pp. 146-151.

G. Brambilla, A. Grazioli, M. Picone, F. Zanichelli, M. Amoretti, A
cost-effective approach to software-in-the-loop simulation of pervasive
systems and applications. IEEE Int. Conf. on Pervasive Computing and
Communications Workshops (PERCOM Workshops), 2014. pp. 207-
210.

V. Osadcuks, A. Pecka, A. Lojans, Hardware and Software Environment
for Evaluation of Control Algorithms and Strategies of Hybrid Power
Systems. Engineering for Rural Development - 10th Int. Scientific Conf.,
2011. pp. 311-316.

V. Osadcuks, A. Galins, Software In The Loop Simulation Of Au-
tonomous Hybrid Power System Of An Agricultural Facility. Engineering
for Rural Development - 11th Int. Scientific Conf., 2012. pp. 500-505.
D. Pitica, Software in the Loop Environment Reliability for Testing
Embedded Code. 18th IEEE Int. Symposium for Design and Technology
in Electronic Packaging (SIITME), 2012. pp. 325-328.

S. van der Hoest, The development of a software-in-the-loop simulation
framework for testing real-time control software. SAI technical report,
Eindhoven University of Technology, 2006.

L. Exel, G. Frey, G. Wolf, M. Oppelt, Re-use of existing simulation
models for DCS engineering via the Functional Mock-up Interface.
19th IEEE Int. Conf. on Emerging Technology and Factory Automation
(ETFA), IEEE, 2014. pp. 1-4.

P. Fishwick, Handbook of Dynamic System Modeling. Chapman and
Hall, 2007.

C. Sonntag, Modeling, simulation and optimization envoronments. In
Handbook of Hybrid Systems Control - Theory, Tools, Applications,
Cambridge University Press, 2009, pp. 328-362.

P. Mosterman, An overview of hybrid simulation phenomena and their
support by simulation packages. In Hybrid Systems: Computation and
Control, LNCS 1569, Springer, 1999. pp. 165-177.

F. Breitenecker, N. Popper, G. Zauner, M. Landsiedl, M. Roessler, B.
Heinzl and A. Koerner, Simulators for physical modelling - classification
and comparison of features (revision 2010) EUROSIM - 7th Congress
on Modelling and Simulation, Vol. 2, 2010. pp. 1051-1061.

A. Borshchev, Y. Karpov, V. Kharitonov, Distributed Simulation of
Hybrid Systems with AnyLogic and HLA. Future Generation Computer
Systems, Vol. 18, Issue 6, 2002. pp. 829-839.

J. Nutaro, ADEVS (A Discrete EVent system Simulator). Arizona Center
for Integrative Modeling & Simulation (ACIMS), University of Arizona,
Tucson. Available at http://www.ece.arizona.edu/nutaro/index.php, 1999.
K. Jensen, Coloured Petri Nets, Chapter 6: Computer tools for coloured
Petri nets. EATCS Monographs in Theoretical Computer Science,
Springer, 1992. pp. 155-203.

F. Bergero, E. Kofman, PowerDEVS. A Tool for Hybrid System Modeling
and Real Time Simulation. Simulation: Transactions of the Society for
Modeling and Simulation International, Vol. 87, Number 1-2, 2011, pp.
113-132,

N. Matloft, Introduction to discrete-event simulation and the SimPy
language. University of California at Davis, Dept. of Compter Science,
2008. Last accessed March 2015.

Functional Specification for SystemC 2.0, Version 2.0-Q, in SystemC in-
stall folder SystemC-2.3.1, 2002. Last accessed from www.accellera.org
on March 2015.

D.C. Black, J. Donovan, B. Bunton, A. Keist, SystemC: From the Ground
Up, Second Edition, Springer, 2010.





