
Hardware Task Migration Module for Improved
Fault Tolerance and Predictability

Shyamsundar Venkataraman, Rui Santos and Akash Kumar
Department of Electrical and Computer Engineering

National University of Singapore
Email: {shyam, elergvds, akash}@nus.edu.sg

Jasper Kuijsten
Department of Electrical Engineering
Eindhoven University of Technology
Email: j.j.a.kuijsten@student.tue.nl

Abstract—Task migration has been applied as an efficient
mechanism to handle faulty processing elements (PEs) in Multi-
processor Systems-on-Chip (MPSoCs). However, current task mi-
gration solutions are either implemented or emulated in software,
compromising intrinsically the predictability and degrading the
system robustness. Moreover, the initial placement and mapping
of the tasks in the MPSoC plays an important role in minimising
the task migration overhead and overall system energy.

This paper proposes a hardware-based task migration scheme
for MPSoC systems, offering better predictability as well as
an improved method of fault tolerance. The proposed scheme
intelligently generates an initial placement for the tasks with
improved fault tolerance and stores these mappings on a hash
map, which is looked up at run-time as and when faults occur.
Compared with the state-of-the-art, our scheme performs up to
1500× faster task migration without any significant overheads.

I. INTRODUCTION

Over the last few years, Multiprocessor Systems-on-Chip
(MPSoCs) are gaining significance in modern embedded sys-
tems, since they satisfy an increasing demand of performance
and scalability required by the emerging applications. How-
ever, with reducing feature size and increasing transistor count,
MPSoCs are becoming more susceptible to permanent and
transient faults [1]. This research focusses on permanent fault-
tolerance techniques.

Permanent faults are traditionally tackled by using hard-
ware redundancy [2]. However, stringent area and power
requirements prohibit the use of such traditional methods
in modern systems. Task migration has been applied as an
effective solution to overcome such errors by remapping a
task from a faulty Processing Element (PE) to other functional
PEs [3]–[9]. Most recent MPSoC systems are implemented
with their PEs interconnected with networks-on-chip (NoCs)
generally in a mesh-based architecture. Multimedia applica-
tions implemented on MPSoC systems are typically executed
multiple times in a periodic fashion. Consistent throughput is
required for multimedia applications to satisfy the needs of the
users. However, when an error occurs in one of the PEs, the
task has to be remapped to another PE to continue the system
operation. In this sense, the time taken to migrate the task is
pivotal in maintaining the throughput of the application.

One major drawback of current task migration techniques
is that they work on the principle of pro-active fault tolerance.
This requires knowledge about the occurrence of faults a-
priory, which is not very realistic since critical faults are
hardly ever predictable. A solution that provides reactive fault

tolerance, i.e. tolerating faults after it has occurred, would be
more pragmatic than the proactive solution.

Another drawback of the current task migration implemen-
tations, is the reduced predictability. Predictability is especially
important in real-time embedded platforms, where the timing
constraints are strict. On the destination PE, the migration
routine execution can interfere with the timeliness of the
current running tasks, or on the other hand, if the migration
routine is not executed on time the migrated task can miss its
deadline. Moreover, software implementations have intrinsic
overheads and high jitter in their actions, which also affects
the system predictability.

Contributions: This paper focusses on a hardware-based
task migration scheme for tolerating permanent faults in MP-
SoC systems with applications modelled using Synchronous
Data Flow Graphs (SDFGs) [10]. Key contributions of this
paper are the following:

• A processor independent task migration scheme, using
dedicated hardware modules with direct access to the
processor memory, making reactive fault tolerance
possible.

• A predictable task migration operation with minimum
hardware overhead, suitable for real-time multimedia
applications with strict timing constraints.

Intelligent mapping of tasks to each of the PEs are gen-
erated at compile-time. These mappings are then stored in a
hash map, for look-up as and when faults occur. When a fault
occurs, the destination PE is selected to migrate by referring
to the table generated earlier. A hardware based task migration
migrates the task to the destination PE in a predictable way and
the task is then continued to run from the new PE. Compared
with the state-of-the-art, our scheme performs up to 1500×
faster task migration without any significant overheads.

The remainder of the paper is organised as follows. Sec-
tion II presents related works concerning existing task migra-
tion methods for MPSoCs in the context of fault tolerance.
Section III introduces the application and architecture model
considered in this research. Section IV then discusses the
implementation details followed by a case study in Section V.
The next Section VI presents the experiments conducted and
the results obtained and finally, Section VII concludes the
paper with future directions.

978-1-4673-7311-1/15/$31.00 ©2015 IEEE 1

II. RELATED WORKS

Task migration mechanisms have been applied for different
purposes in MPSoCs such as load balancing, performance
improvement, power management and fault-tolerance. For this
reason, it has been a topic of intense research and study. In
particular, researchers have put their efforts in finding software
solutions to reduce and limit the task migration overheads.
Nollet et al. [3] propose to reduce overhead of the migration
software daemon by exploiting platform specific debug hard-
ware. The migration is triggered by the Operating System,
which informs the task to be migrated. Aguiar et al. [4] explore
different architectures for task migration, exploring trade-offs
like flexibility vs. resource usage. Moreover, they propose
checkpoint locations on application-level to reduce the size
of the migrated task. Saraswat et al. [5] propose an online
heuristic for task migration in fault-tolerant embedded systems,
where the critical tasks are assured to still meet their deadlines
and the Quality of Service of non-critical tasks is optimized.
However, they assume a platform where all PEs have access to
a shared memory with zero migration transfer duration, hence
their solution is not applicable to platforms with distributed
memory. Furthermore, they only consider pro-active fault-
tolerance. Abebei et al. [6] present an algorithm for re-mapping
an application execution in case a processor becomes faulty.
However, important details are missing, in particular how the
task migration is performed, using a shared or distributed
memory. Chakravorty et al. [7] and Engelmann et al. [8]
employ task migration for fault-tolerant HPC-cluster systems.
Both these techniques require knowledge of the critical PE
faults a-priori. Acquaviva et al. [9] also propose and assess a
middleware layer that implements task migration in MPSoCs,
but targeted to soft real-time multimedia applications. Sarkar
et al. [11] reduce a case of second-order overhead due to task
migrations, by using a push-based protocol to replace data in
caches before migrations, to reduce the amount of cache misses
after the migration.

From the implementation perspective, different migration
mechanisms have been proposed in the literature. These migra-
tion mechanisms can be classified in two categories, namely
using replication and re-creation. In replication mechanism,
one task that is created in one core is also replicated into
the other cores [12]. Therefore, when the task migration is
required, only the execution pointer and the corresponding
context states are migrated to the core that will continue the
execution. Using the latter mechanism, one task is created in
only one PE. During the execution, when the migration is
required, the entire task (code, data and context execution)
is migrated to the receiver core, to continue its execution from
the point where it was suspended.

Bertozzi et al. [13] present a re-creation task migration
mechanism, based on a software middleware layer, which
interfaces the process’ execution and the kernel. This layer
handles the whole migration process, which can be performed
in a set of points defined by the user, at the application
code. Briao et al. [14] also follow a re-creation approach
and investigate the impact of migration overhead in real-
time systems. The task migration is performed through the
interprocess communication messages, used to migrate the
application code, data and processor context.

Gantel et al. [15] propose a task migration approach based
on the replication method. In particular, they present a software

V0

V3

V1 V2

V4

V6

V5

R R R

R R R

R R R

c1 c2

c3

c6 c7 c8

c4 c5

c0

c0 c1 c2

c3 c4 c5

c6 c7 c8

V0

V1

V2

V3 V4

V5

V6

Gapp Garch Mapping
map

Application Graph Architecture Graph

Fig. 1. Application and architecture model

layer, which handles the migration among soft-core processors.
Cannella et al. [16] present a middleware layer, which allows
the integration of Polyhedral Process Network (PPN) processes
with NoC-based MPSoCs. This middleware layer includes two
main components. The first one is called PPN communication
and it is responsible for the communication and respective
synchronization between the PPN processes in different PEs
on the MPSoCs. The second one is responsible for the migra-
tion process among the different PEs. The proposed solution
uses the replication mechanism, since the faster execution
is privileged. An extension of that work is introduced by
Meloni et al. [17], where the authors propose a hardware
task migration module similar to our work. They argue that
their module performs independent task migration from a
faulty PE. However, they emulate its behaviour in software
and, consequently, no hardware overhead and predictability
evaluation are performed.

All the presented works implement or emulate the task
migration mechanisms in software, creating middleware layers
to increase the operating system functionalities. However,
from the timeliness and predictability perspective, the software
implementations have intrinsic overheads and high jitter in
their actions. On the other hand, from the fault-tolerance
perspective, if a PE fails during the execution, the migration of
this task in software to another PE (to complete its execution)
would be impossible, since its own PE is faulty. To overcome
this limitation, we propose a new hardware approach for
the task migration mechanism in MPSoCs, which provides
predictable task migration suitable for multimedia applications
with strict timing and throughput constraints.

III. APPLICATION AND ARCHITECTURE MODEL

A. Application Model

The application is modelled as a directed graph Gapp =
(Vapp, Eapp), where Vapp is the set of nodes representing
the tasks of the application and Eapp is the set of edges
representing the data dependency among the tasks. Each task
vi ∈ Vapp is a tuple < Ti, Si, {Dij} > where Ti is the
execution time of vi, Si is the state space (program and data
memory) and Dij is the data produced on edge eij on every
execution of vi.

B. Architecture Model

A mesh-based Network-on-Chip (NoC) architecture has
been used for this research. However, the scheme presented in
this paper can be extended easily to other NoC architectures
such as torus and trees. The NoC is represented as Garch =

2

(Varch, Earch), where Varch is the set of nodes representing
the PEs and the Earch is the set of edges representing the
connection between the PEs. Mapping an application to an
MPSoC is represented as follows.

Gapp
map−−→

n
Garch := G(Varch, Vapp) := Mn

where n is the number of cores of the MPSoC used by an
application. With every core ci ∈ Varch, a set Ai is associated,
consisting of the task(s) mapped to ci. Thus, Vapp = ∪n

i=1Ai. It
is important to note that the proposed architecture also requires
a global shared memory, which is accessible by all the PEs
through the NoC. The need for the shared memory is discussed
further in Section III-D. Figure 1 describes the model used for
the application and the architecture and a sample mapping of
the application to the MPSoC.

C. Fault Model and Assumptions

• Permanent faults are self-revealing

• Faults on active cores are independent

• Only faults on the PEs are of concern

• Checkpointing is done to save the state space of the
tasks

• Probability of more than one PE failing in a small
interval ∆t is negligible

• Each processor of the MPSoC has its own private data
and instruction memory

D. Design Time Task Mapping

Definition 1: (COMMUNICATION ENERGY) The energy
used in sending and receiving of data between two different
tasks of the same application. Communication energy is repre-
sented as Eij

comm where i, j ∈ Vapp and communication energy
for two tasks mapped to the same PE is considered zero. Thus,

Eab
comm = 0|a ∈ V i

arch ∧ b ∈ V j
arch ∧ i = j

Definition 2: (MIGRATION ENERGY) The energy used
in migrating a task vi ∈ Vapp from V i

arch to V j
arch. Migration

energy is represented as Eij
mig , where i, j ∈ Vapp.

As discussed in the introduction of this paper, the initial
mapping of the tasks Vapp is pivotal in determining the time
taken to migrate the task in case of a PE failure. Moreover, the
initial mapping also determines the amount of communication
and migration energy utilised by the application.

To generate an initial task mapping for the tasks in Gapp,
we use the technique proposed by Das et al. [18]. In this
technique, the authors propose a communication energy aware
fault-tolerant task mapping of throughput constrained multime-
dia applications. The technique calculates the communication
energy (Ecomm) and the migration energy (Emig) for a given
Gapp and Garch, and generates an initial task mapping that
results in minimal communication and migration energy usage.

The technique calculates in design time, the various fault
scenarios and the mapping that would provide the minimum
communication and migration overhead. These mappings are
then stored in a HashMap, which is then accessed in the
case of a fault during run-time. The HashMap specifies the

R R R

R R R

R R R

T GM

TR Router Tile
Global

Memory

T

T

T

T T

T T

Fig. 2. Overall system architecture

CH

MH

TMM

Router

PE
I-

MEM

D-
MEM

Tile

Fig. 3. Architecture of each tile

corresponding mapping for each fault scenario possible. Since
the HashMap has to be accessible by all the PEs in the
MPSoC, the HashMap is stored in the global shared memory
of the system. For further details on the implementation of the
technique, the reader is urged to refer to the paper [18].

IV. TASK MIGRATION MODULE

To provide a stable throughput guarantee of multimedia
applications, even in the event of a fault in one of the PEs,
the task migration mechanism has to be predictable. Moreover,
to provide reactive fault tolerance, the task migration should
be independent from the working of the processor. With these
goals in mind, a hardware based task migration scheme has
been proposed, which can provide both proactive as well as
reactive fault tolerance. The following sections describe the
Task Migration Module (TMM) architecture and details the
flow of the TMM.

A. TMM Architecture

Figures 2 and 3 detail the overall architecture of the
MPSoC along with the architecture of the TMM. The TMM
sits between the PE and the NoC router and acts as a Network
Interface (NI). Reactive fault tolerance is made possible by
making the TMM independent from the processor and is given
direct access to the state space (instruction and data memory)
of the processor. In the event of a fault, the TMM stops
forwarding data and migrates the tasks on the PE according

3

Start

Scan tasks
in PE

Is PE
Faulty? yes

Halt data
to/from PE

Migrate
task(s) to
dest PE(s)

Suspend
current PE

Stop

noIncoming
task?

no

TMM acts
as an NI

yes

Accept
task(s)

Update
task(s) list

in MH

Fig. 4. Flow of the TMM

MUX

Comm
Handler

(CH)

Migration
handler

(MH)

TMM 1

To memory

MUX

Comm
Handler

(CH)

Migration
handler

(MH)

To memory

TMM 2

1

2

4
3

5

5 5

6 6

Fig. 5. Flow of the task migration in hardware

to the HashMap computed at design time (retrieved from the
global memory). The TMM is made of two major components
– Migration Handler (MH) and the Communication Handler
(CH). The MH performs the main operations of forwarding
packets to and from the PE. Moreover, and also initiates the
task migration in the case of a permanent fault. Referring to
the global shared memory that contains the HashMap, the MH
can decide which destination PE to send a task to. The CH
handles all the communication to and from the router. In the
case of an outgoing task migration, it forwards all the task state
space to the destination PE. In the case of an incoming task
migration, it forwards the task details to the MH and writes
the task state space into the PE memories.

B. TMM Flow

Figure 4 shows the entire flow of a single TMM connected
to a PE. When the system is initialised with tasks in the
PEs, the TMM scans the PEs for the list of tasks that have
been loaded. The TMM stores this data locally in its memory.
As long as the PE is not faulty, and there are no incoming
task migration requests, the TMM basically acts as a Network
Interface (NI) and connects the PE to the NoC router. If there
is an incoming task request, the TMM migrates the incoming
task(s) and loads them into the current PE memory. The TMM

also updates the task list with the new tasks migrated. In the
case of the current PE failing, the TMM immediately stops
all the flow of data to and from the PE. It then migrates
all the tasks in the current PE to a destination PE as has
been computed during the design time and finally, the TMM
suspends the faulty PE.

The indication of incoming and outgoing task migration
requests is done through the use of header packets. These
header packets are small packets that are sent to the destination
PEs before the tasks are actually migrated. The TMM in each
of the PEs continuously look out for these header packets and
hence are able to identify if a permanent fault has occured in
any PE. Once the destination PE receives the header packet,
it sends a reply packet to the migrating TMM, confirming that
it is ready to accept the new task. Once the migrating TMM
receives the reply packet, it proceeds to send the task code and
data to the receiving PE.

For the reader to obtain a better idea of the entire flow
of the TMM, an example sequence of migration is presented
along with an illustration shown in Figure 5. The figure only
shows the interaction between the two TMMs and does not
show the NoC between. The following points details the steps
taken by the system when PE1 fails due to a permanent fault
and the current task(s) running on PE1 is migrated to PE2. PE1
is associated with TMM1 and similarly, PE2 with TMM2.

1) Migration Handler (MH) of TMM1 detects a perma-
nent fault on PE1 and prepares to migrate the tasks
running on the PE1 to PE2.

2) Communication Handler (CH) of TMM1 creates a
header packet and sends a request to the CH of
TMM2.

3) CH of TMM2, after receiving the header packet,
forwards it to the MH, which then prepares to accept
the task being migrated from PE1.

4) CH of TMM2 conveys that the TMM2 is ready to
accept the incoming migration by sending a reply
packet.

5) CH of TMM1 reads data from its PE and sends it
to the CH of TMM2, which in turn writes it to the
memory of its PE.

6) Once the data transfer is done, both the CHs notify
their corresponding MHs. The task can now continue
from the new PE context loading the task from
memory.

C. TMM Implementation

To measure time taken to migrate a task from one PE to
another, a hardware of the TMM has been implemented. For
the sake of simplicity, the system comprises of a 2×2 MPSoC
implemented on a Virtex-6 ML605 FPGA board, which has a
XC6VLX240T-1f1156 FPGA chip. The multiprocessor system
was built using the Xilinx Microblaze (MB) Cores for the 4
PEs. The Xilinx Microblaze IP is a general purpose config-
urable x86 CPU designed by Xilinx and is highly optimised for
FPGA synthesis. The implemented design employs the MBs in
their most lightweight form without any kind of optimisation,
e.g. caches or memory management units. The TMM was
implemented as a custom hardware peripheral and connected
to the Processor Local Bus (PLB) of the MB. The MB is
further connected to its memories through dual-ported BRAM

4

D1
τ1

τ2

Sending data

Receiving data

τ1 τ2

PE1

PE2

TMM 1

TMM 2

Time

R1

R2
D2D1

Checkpoints Task arrival Task deadline

Fig. 6. Migration of the PRESENT algorithm task at runtime

cores. All the communications between the TMMs use the Fast
Simplex Link (FSL), which is an asynchronous bidirectional
32-bit wide link with FIFO-buffers both at the sending and
receiving side.

V. CASE STUDY

To evaluate the hardware implementation of the TMM,
the PRESENT cipher algorithm was implemented on one of
the PEs. PRESENT is a lightweight block cipher algorithm
developed quite recently [19]. It is one of the most compact
encryption methods ever designed and is 2.5× smaller than
the Advanced Encryption Standard (AES). The block size
implemented was 64 bits and the key size was set to 80 bits
for the purpose of the case study.

Since the PRESENT algorithm is a lightweight block
cipher, it was implemented as a single task in one of the
four processors of the MPSoC. Regular checkpoints were setup
while the algorithm was running on the MB by copying the
values of the registers to a pre-assigned memory of the MB.
To simulate the failure of the PE, a push button was used to
trigger a permanent fault. An image file was given as input
to the algorithm and was made to execute in the initial PE.
During the execution, the push button was triggered to simulate
a permanent fault. Figure 6 traces the flow of the task execution
before and after the task is migrated. As soon as a fault is
detected by the TMM, it immediately halts further data from
being processed. It then sequentially reads and transmits the
instruction and data memory of the program to the destination
PE. Once the TMM in the destination PE receives the task,
it resumes the task from its last checkpoint. It is to be noted
here that it is the decision of the destination processor on when
to execute the newly migrated task. Moreover, the execution
would also depend on the scheduling algorithm being run by
each of the PEs. For the purpose of the case study, another
PRESENT algorithm was running in the destination PE and
was pre-empted when the new task was migrated.

VI. EXPERIMENTS AND RESULTS

The following experiments discuss the results of the hard-
ware implementation.

A. Timing Analysis

The time to migrate a task from one PE to another can be
given by the following equation.

Tmig = ((d× nbyte) + nchnl + nrd/wr)× 10−2

10 20 30 40 50 60

102

103

104

105

106

Size (KB)

Ti
m

e
Ta

ke
n

(µ
s)

TMM (150MHz)
Gantel [15]
Bertozzi [13]

Fig. 7. Comparison of time taken to migrate different task sizes

TABLE I. SPEED UP OBTAINED WITH TMM

Time to migrate 8KB (µs) Speed up

TMM (150 MHz) 68.5 1
Gantel [15] 102000 1489.05
Bertozzi [13] 447.1 6.52

Tmig is the number of cycles to migrate the task from
one PE to another. d is the size of the task to be transferred
in bytes and nbyte is the number of cycles taken to transfer
a single byte from one PE onto the NoC. In our current
implementation, nbyte is 1.25 while d is varied for a wide
range of values. nchnl and nrd/wr are the number of cycles
taken for the communication delay in the NoC and the read and
write delay, respectively. While nrd/wr is constant (depending
on the underlying architecture of the PE), nchnl depends on
the traffic existing on the NoC channel.

Experimental timing analysis was conducted with different
data memory sizes and the time it took to completely migrate
the task from the host to the destination PE was noted. As
expected, the time to migrate a task grows linearly as the size
of the data increases. On average, the time taken to migrate a
couple of tens of kilobytes only takes a few hundred microsec-
onds. Moreover, the migration time measured experimentally
matches perfectly with the theoretically estimated value.

Figure 7 shows the time taken to migrate 8, 16, 32 and
64 KB of data using techniques proposed in this paper,
by Gantel et al. [15] and Bertozzi et al. [13]. Since both
[15] and [13] use a software level or middleware level task
migration schemes, the time taken to migrate is in the order
of milliseconds. The task migration proposed in this paper
however is only in the order of microseconds due to the
implementation of the migration in hardware. The synthesis
report for TMM states a maximum allowed clock frequency
of 165.782 Mhz. Hence, the TMM is set to run at 150 MHz.
It is to be noted here that the migration results in [13] do not
specify the frequency at which the system was run. As such, it
was assumed that the processor was run at a frequency which
would produce the best possible result for task migration.

Table I shows the speed up obtained as compared with other
techniques. When the TMM is run at 150 MHz, it performs
about 1500× better than the one in Gantel et al and more than
6× better than the one in Bertozzi et al.

5

TMM
20%

PE

42%

Network

38%

TMM
17%

PE
71%

Network
12%

Area usage Power usage

Fig. 8. Area and power usage of different components in the system

B. Area and Power Analysis

The current implementation of TMM uses 20% of the entire
system while the communication network and PEs take 38%
and 42% of the system, respectively. Moreover, each PE, TMM
and network of the system uses 1389, 596 and 612 Look-up
Tables (LUTs), respectively. Figure 8 compares the area and
power usage of the TMMs along with the PEs and the FSLs.
The TMMs uses only 17% of the power of the PEs. The power
consumption was measured using the XPower Analyser tool
provided by Xilinx, for an ambient temperature of 25◦ Celcius
and an airflow of 250 Linear Feet per Minute (LFM) without
any heat sinks.

C. Memory Overhead

Since the context is saved and loaded during migration,
extra memory space is required for storing the task context.
The size of the task context is dependent on the processor
on which the technique is implemented. Microblaze has 32
32-bit general purpose registers and 11 other special purpose
registers. These 43 registers hence require an additional 172
bytes of memory. Moreover, 16 additional bytes of memory
was used for synchronization of data between the TMMs.
Therefore, the total memory overhead amounts to 188 bytes
per processor. It is to be noted that any system that requires
context saving and loading would require this overhead and is
hence not specific to this technique.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we present a new scheme to tolerate perma-
nent faults in an MPSoC system. Tasks are mapped to the MP-
SoC in such a way that they minimise the communication and
migration energy overhead. Moreover, a processor independent
hardware task migration module with a predictable delay has
been proposed to speed up the task migrations in the event of
a permanent fault in one of the processors. Compared to the
state-of-the-art, the proposed scheme performs much faster in
terms of task migration. This helps guarantee the throughput
of applications having strict timing constraints.

In the future, we would like to explore using a single TMM
for multiple processors, leading to a further decrease in the area
overhead. Extending the scheme to heterogeneous architectures
is also another improvement that can be looked into in the
future. Moreover, an open source tool release is planned to help
researchers world-wide to benefit from our work and easily
merge their designs with the proposed architecture and test
their techniques with various benchmarks and compare with
state-of-the-art techniques.

VIII. ACKNOWLEDGEMENT

This work was supported by Singapore Ministry of Edu-
cation with grant number R-263-000-B33-112.

REFERENCES

[1] C. Constantinescu, “Trends and challenges in VLSI circuit reliability,”
IEEE micro, 2003.

[2] Y. Xie, L. Li, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin,
“Reliability-aware co-synthesis for embedded systems,” The Journal
of VLSI Signal Processing Systems for Signal, Image, and Video
Technology, 2007.

[3] V. Nollet, P. Avasare, J.-Y. Mignolet, and D. Verkest, “Low cost
task migration initiation in a heterogeneous MP-SoC,” in Design,
Automation and Test in Europe (DATE), 2005.

[4] A. Aguiar, S. J. Filho, T. G. dos Santos, C. Marcon, and F. Hessel, “Ar-
chitectural Support for Task Migration Concerning MPSoC,” Congresso
da Sociedade Brasileira de Computao , 2008.

[5] P. K. Saraswat, P. Pop, and J. Madsen, “Task migration for fault-
tolerance in mixed-criticality embedded systems,” Special Interest
Group on Embedded Systems (SIGBED), 2009.

[6] C. Ababei and R. Katti, “Achieving network on chip fault tolerance
by adaptive remapping,” in IEEE International Parallel & Distributed
Processing Symposium (IPDPS), 2009.

[7] S. Chakravorty, C. Mendes, and L. Kal, “Proactive Fault Tolerance in
MPI Applications Via Task Migration,” in International Conference on
High Performance Computing (HiPC), 2006.

[8] C. Engelmann, G. Vallee, T. Naughton, and S. Scott, “Proactive Fault
Tolerance Using Preemptive Migration,” in Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing
(PDP), 2009.

[9] A. Acquaviva, A. Alimonda, S. Carta, and M. Pittau, “Assessing task
migration impact on embedded soft real-time streaming multimedia
applications,” EURASIP Journal on Embedded Systems, 2008.

[10] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceed-
ings of the IEEE, 1987.

[11] A. Sarkar, F. Mueller, H. Ramaprasad, and S. Mohan, “Push-assisted
migration of real-time tasks in multi-core processors,” in Languages,
Compilers, and Tools for Embedded Systems (LCTES), 2009.

[12] S. Holmbacka, W. Lund, S. Lafond, and J. Lilius, “Task Migration
for Dynamic Power and Performance Characteristics on Many-Core
Distributed Operating Systems,” in Euromicro International Conference
on Parallel, Distributed, and Network-Based Processing (PDP), 2013.

[13] S. Bertozzi, A. Acquaviva, D. Bertozzi, and A. Poggiali, “Supporting
task migration in multi-processor systems-on-chip: a feasibility study,”
in Design, Automation and Test in Europe (DATE), 2006.

[14] E. W. Briao, D. Barcelos, F. Wronski, and F. Wagner, “Impact of task
migration in NoC-based MPSoCs for soft real-time applications,” in
IEEE International Conference on Very Large Scale Integration (VLSI-
SoC), 2007.

[15] L. Gantel, S. Layouni, M. Benkhelifa, F. Verdier, and S. Chauvet,
“Multiprocessor Task Migration Implementation in a Reconfigurable
Platform,” in International Conference on Reconfigurable Computing
and FPGAs (ReConFig), 2009.

[16] E. Cannella, O. Derin, P. Meloni, G. Tuveri, and T. Stefanov, “Adaptivity
Support for MPSoCs Based on Process Migration in Polyhedral Process
Networks,” VLSI Design, 2012.

[17] P. Meloni, G. Tuveri, L. Raffo, E. Cannella, T. Stefanov, O. Derin,
L. Fiorin, and M. Sami, “System Adaptivity and Fault-Tolerance in
NoC-based MPSoCs: The MADNESS Project Approach,” in Euromicro
Conference on Digital System Design (DSD), 2012.

[18] A. Das, A. Kumar, and B. Veeravalli, “Energy-Aware Communication
and Remapping of Tasks for Reliable Multimedia Multiprocessor Sys-
tems.” in IEEE International Conference on Parallel and Distributed
Systems (ICPADS), 2012.

[19] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J.
Robshaw, Y. Seurin, and C. Vikkelsoe, PRESENT: An ultra-lightweight
block cipher. Springer, 2007.

6

