
Platform-aware Dynamic Data Type Refinement

Methodology for Radix Tree Data Structures

Thomas Papastergiou∗, Lazaros Papadopoulos†, and Dimitrios Soudris‡

School of Electrical and Computer Engineering

National Technical University of Athens, Greece

Email: ∗el09149@central.ntua.gr, †lpapadop@microlab.ntua.gr, ‡dsoudris@microlab.ntua.gr

Abstract—Modern embedded systems are now capable of
executing complex and demanding applications that are often
based on large data structures. The design of the critical data
structures of the application affects the performance and the
memory requirements of the whole system. Dynamic Data Struc-
ture Refinement methodology provides optimizations, mainly
in list and array data structures, which are based on the
application’s features and access patterns. In this work, we extend
various aspects of the methodology: First, we integrate radix tree
optimizations. Then, we provide a set of platform-aware data
structure implementations, for performing optimizations based
on the hardware features. The extended methodology is evaluated
using a wide set of synthetic and real-world benchmarks, in which
we achieved performance and memory trade-offs up to 29.6%.
Additionally, Pareto optimal data structure implementations that
were not available by the previous methodology, are identified
with the extended one.

I. INTRODUCTION

Nowadays, we experience the constantly increasing com-
putational power of embedded systems. Applications that
were previously executed in High Performance Computer
(HPC) systems, are now implemented in embedded devices.
Embedded servers, multicore heterogeneous architectures that
integrate both embedded cores and FPGA programmable logic
[1] execute complex and demanding applications that require
high computational power. The term High Performance Em-
bedded Computing (HPEC) has been recently used to describe
embedded devices with very large processing power, used
mostly in aerospace and military applications [2]. The energy
efficiency of these systems makes them competitive in the
market, over the large power-hungry systems and promising
solutions towards the development of the exascale computing
[3].

Examples of modern application domains that are executed
in high-end embedded devices are databases and stream pro-
cessing. Such applications are expected to store and process
large amounts of data. The data are normally stored in complex
data structures, in order to be processed efficiently, with low
latency and high throughput. The data inserted and stored in
these data structures arrive often in unpredictable ways, thus
resulting in highly dynamic systems.

Apparently, these applications rely heavily on data struc-
tures. Different data structures favor different application ac-
cess patterns. Therefore, the data structure implementation
greatly affects the performance, the memory utilization and
the energy consumption of the whole system. However, the
complexity of modern applications makes the data structure

design and optimization an error-prone and time-consuming
task, especially, when there is a large set of metrics that should
be optimized at the same time by the developer. Therefore,
there is a need of tools that automate the whole process of
selecting and optimizing the data structures of the application.

Dynamic Data Structure Refinement methodology(DDTR)
is a set of tools that assist the designer in selecting the
optimal data structure for the application under optimization
[4]. The methodology proposes a design time exploration,
aiming to select the optimal dynamic data structure imple-
mentations, from a set of ready-to-use data structures, for
dynamic applications under optimization. The main idea is
to run the application once for each different data structure
implementation and collect profiling result for each execution.
Then, a set of Pareto points assists the designer to select the
optimal implementation.

In this work, we propose several extensions to the DDTR
approach to address its limitations: First, we argue that the
optimization of the data structures is not only related with
the application access pattern, but also with the underlying
hardware specifications in which the application is executed.
Therefore, we propose a new set of platform-dependent data
structure implementations. Additionally, we extend the data
structure library in which the methodology is based, with tree
data structures.

The goal of the DDTR methodology is to provide to
the application developer a set of tools for designing and
optimizing the data structures of dynamic applications. In this
work we focus on radix tree data structures, which are used for
storing large amounts of data (e.g. IP addresses, dictionaries,
etc.). The DDTR library is extended to cover five different
radix tree implementations, in which two of them are platform-
aware, in the sense that they take advantage of the memory
cache, in case it is a part of the underlying platform memory
hierarchy. The methodology is evaluated using a wide set of
synthetic and realistic datasets and two modern embedded
platforms with different hardware specifications.

The rest of the paper is organized as follows: In Section
II we provide a sort description of related approaches. The
DDTR methodology, along with its extensions is presented in
Section III. In Section IV we provide details about the cache
conscious data structure implementations. The experimental
results are presented in Section V, while in Section VI we
draw our conclusions.

978-1-4673-7311-1/15/$31.00 ©2015 IEEE 1

II. RELATED WORK

The optimization of data structures has been extensively
studied in the literature [5], [6], [7]. However, it focuses mainly
to static compile-time data allocation optimizations. Our work
focuses on data structures of dynamic applications, in which
the access pattern may change at runtime, along with the
dynamic behavior of the application.

Several radix tree data structure implementations have
been proposed to optimize the performance or the memory
requirements of the application [8], [9]. The performance of
these data structures depends on the dynamic characteristics
of the application and more specifically, on the access pattern
and on the underlying platform specifications. In other words,
different dynamic characteristics of applications would result
in different throughput, memory utilization and energy con-
sumption results for each one. Therefore, such data structure
implementations can be integrated in our methodology for
exploration and evaluation.

There exist several methodologies for the implementation
of cache conscious data structures. For instance, the ccmalloc
library implements a wrapper around malloc to optimize the
memory allocation of newly created elements and increase
locality [10]. The coloring technique attempts to map con-
temporaneously accessed elements to non-conflicting cache
regions [11]. The clustering technique attempts to pack in
a cache block the data structure elements that are accessed
contemporaneously. [10]. In this work we extend the DDTR
methodology by integrating cache conscious data structures in
it that are implemented based on the clustering technique.

This work is mostly related to [4], which describes the
DDTR approach, focusing mainly on multimedia and network
applications. The library of data structures in which it is based,
is limited to simple platform-independent data structures, like
lists and arrays. On the contrary, in the present work, the
methodology is extended to trees and platform-dependent data
structure implementations.

III. METHODOLOGY DESCRIPTION

In this Section we provide a short description of the DDTR
methodology focusing on the new features we provide in order
to extend the methodology to radix trees and to platform-
specific data structure implementations.

A. Description of DDTR and Limitations

The flow of the DDTR methodology is presented in Fig.1.
It is composed of three steps which are briefly described in this
subsection. More information can be found in [4]. The core
of the methodology is a library of ready-to-use data structure
implementations in C/C++. The library contains an STL-like
interface that is inserted in the source code of the application
and it replaces its data structures with the ones of the library.
Therefore, all the data structure operations, (e.g. push, pop,
find etc.) are forwarded in the library’s data structures. The
second step of the DDTR methodology is the exploration
phase. The application is executed once for each different data
structure implementation of the library and the execution time
and memory utilization are logged. In the last step, these results
are presented in Pareto curves. Thus, the designer can select the
data structure implementations which fit the design constraints.

Library interface is inserted in

structures.

Exploration of different data

structure implemenations

Pareto point exploration

Step 1

Step 2

Step 3

Optimized application

Fig. 1. Flow of the DDTR methodology.

TABLE I. QUALITATIVE COMPARISON BETWEEN THE EXISTING AND

NEW DDTR APPROACH

Existing DDTR New DDTR

Library of Data Structures list, arrays list, arrays, radix trees

Platform-awareness Platform-independent Cache-conscious

implementations implementations

Metrics Exec. time, memory Exec. time, memory,

throughput, latency

Evaluation x86 ARM-based, Myriad

embedded systems

The DDTR methodology, as presented in [4] has a number
of limitations, which are summarized, as follows:

• It contains a relatively small number of simple data
structures, mainly list and array implementations.
More complex data structures, like trees, were never
evaluated.

• The DDTR approach was developed under the as-
sumption that data structure implementation con-
straints are related only to the application dynamic
behavior. Therefore, it contains only platform inde-
pendent data structure implementations. They are built
at high level of abstraction and consider a plane
memory hierarchy. As a result, they do not consider
any memory specification, like caches.

• Finally, the profiling component of the DDTR method-
ology, logs only execution time and memory utiliza-
tion. Other important metrics, like throughput and
latency of operations are not available.

We address these issues by providing a set of extensions to the
methodology, which can make it useful in modern complex
applications executed in high-end hardware platforms.

B. New DDTR approach

In these subsection we describe a new approach to the
DDTR methodology and discuss the way we faced the limita-
tions that were previously described. A qualitative comparison

2

Application

source code

DDTR

library

Interface

Library of Data

Structures

Platform
independent:

- Lists

- Arrays

Platform
dependent:
- Radix trees

Exploratation

Platform

Specs

(cache,

memory

size,

etc.)

DDTR

Extensions

Existing DDTR

components

e
x
e

c
u

ti
o

n
ti
m

e

overhead

th
ro

u
g

h
p

u
t

memory size

Profiling

component - Radix Trees

Fig. 2. Tools supporting the DDTR methodology. The new tools and
extensions are highlighted.

between the existing and the new DDTR approach is summa-
rized in Table I.

As mentioned in the previous subsection, the existing
DDTR methodology focuses on lists and array implementa-
tions. The new DDTR approach presented in this work extends
the existing one by integrating tree data structures, and more
specifically, radix tree implementations. Radix trees are exten-
sively used in applications for storing and handling strings,
like dictionary data and IP addresses. Several implementations
of the radix trees have been proposed in the literature: Apart
from the Patricia trie implementation, Ternary tree and Hat-
trie [8] are other alternatives, which are integrated in the new
DDTR library.

As stated before, in the new DDTR approach, we argue that
the optimal data structure implementation is not only affected
by the application dynamic behavior (e.g. the access pattern,
the dominant operations etc.), but also by the system’s architec-
ture and mainly by the existence of cache memory. Therefore,
we have extended the data structure implementations of the
library by providing implementations that exploit the cache
memory. As described in next section in more detail, both the
Patricia trie and the Ternary tree can be optimized to become
cache conscious. Therefore, the library provides a total of five
different radix tree implementations.

The existing DDTR approach provides information for
performance and memory utilization of each data structure
implementation, during the exploration phase. The new ap-
proach extends the profiling information with new metrics, like
throughput and overhead information for the cache conscious
implementations, which are important for data structures used
for storing large amounts of data.

Finally, in contrast with the existing DDTR methodology,
the new one is evaluated in real modern embedded devices.
Myriad co-processor [13] and a Freescale i.MX6 [12] are
two embedded chips with different memory specifications.
Therefore, in this work, we extend the DDTR approach, by
showing how different hardware characteristics, along with the
application dynamic behavior, affect the optimal data structure
implementation.

Fig.2 presents the tools composing the DDTR methodol-
ogy, along with the new tools that extend its features. First, as
stated earlier, the extended library contains a new set of radix
tree data structures. There is a total of five different radix tree

Fig. 3. Tree reorganization process of the cache conscious data structures.

implementations, in which two of them are cache conscious.
Additionally, there is an updated profiling component, which
logs information about the throughput and the overhead of
cache conscious data structures (apart from the execution
time and the memory utilization that the existing component
logs). Finally, we developed a new component which provides
the DDTR methodology with hardware-related information,
such as the existence of cache memory. This component
enables or disables specific DDTR implementations in the
exploration phase. For example, there is no reason to evaluate
cache conscious implementations in an embedded system that
does not contain cache memories. In this case, the relevant
implementations are excluded automatically in the exploration
phase, thus reducing the exploration time.

IV. CACHE CONSCIOUS RADIX TREE IMPLEMENTATIONS

In this section, we describe the algorithms we used for the
cache conscious (i.e. platform-aware) radix tree implementa-
tions. The two data structures that were optimized in order to
be converted to cache conscious are the Ternary tree and the
Patricia trie. Another cache optimized data structure that we
integrated in the extended DDTR library is the Hat-trie [8].

Each Ternary tree node holds a string character, along
with three pointers: (greater ,equal ,smaller). As the string
is consumed one character at a time, the nodes are traversed
in the following fashion: if the current character is equal to the
character of the node the equal pointer is followed; otherwise
the greater or smaller pointer is followed, accordingly.

The Patricia Trie is a combination of radix and crit-bit tree.
Contrary to the Ternary’s tree nodes, Patricia nodes store a
complete string, alongside with an integer that marks a specific
bit of the string. As a result, instead of examining the whole
string, only the critical bit is examined. If the bit is set, the
right pointer is followed, otherwise the left one is followed.
Insertions are more complex than in the Ternary tree, since
the crit-bit must be examined before inserting the node to the
correct position in the tree.

The cache conscious implementations of the Patricia and
the Ternary tree we implemented as part of the extended DDTR
library are based on the compression technique, which is
described in [10]. The compression technique enables elements
to be clustered to the same cache block, by separating the
node fields (i.e. structure’s data) in those which are accessed
frequently and those which are not and by clustering them in
the same cache line. Based on this idea, in our cache con-
scious implementations, we cluster adjacent tree nodes in the

3

same cache line. Thus, we benefit from hardware prefetching
techniques, which most modern processors avail. Additionally,
adjacent cache lines are fetched in the cache after cache
misses, which also increased the application performance.
Even if prefetching techniques are not available, a performance
increase is almost always guaranteed as the spatial locality is
as strong as possible.

However, the memory fragmentation that occurs during the
tree node updates (i.e. insertions and deletions of tree nodes),
may eliminate the advantages of the clustering. One simple
solution is to initiate a complete tree memory reorganization at
specific moments of the execution time. This approach requires
the allocation of the following data structures: An array with
memory size equal to that of the tree, in which the existing tree
nodes are allocated in order to increase the memory locality
and a list (address-list), which provides the necessary memory
chunks for the new nodes that are being created after the
reorganization.

To maximize the locality, the adjacent tree nodes are
allocated in adjacent positions in the array, so as to reduce
the number of possible cache misses. Therefore, the lookup
tree operations are expected to be very efficient in the cache
conscious implementations.

The reorganization process is the following: Each time a
reorganization takes place, a new array is being allocated with
size equal to the existing tree size. Then, the tree nodes in
the existing array, along with the nodes in the address-list are
copied in the new array. Finally, the old array is deallocated
and the address-list becomes empty.

In respect with the address-list, which provides memory
chunks for the newly created nodes, we performed the follow-
ing optimization: Instead of providing memory chunks of size
equal to a single tree node, we allocate large enough chunks in
which more than one tree nodes can be stored. Therefore, the
number of the address-list elements is reduced. Additionally,
this approach requires less malloc calls, which often leads to
higher performance. Also, the reduced number of malloc calls
leads to less memory overhead, due to the reduction of the
extra system memory that is required by the internals of the
OS memory allocator.

The tree reorganization process is further illustrated with
an example in Fig.3. Before the tree reorganization, there exist
an array with 4 tree elements (memory chunk #1)and the
address-list, which holds the two elements that were created
after the last reorganization. When a specific number of update
operations has occurred (i.e. insertions and deletions), the tree
needs to be reorganized, in order to increase its locality. In our
experiments the reorganization takes place when the number
of modifications (insertions and deletions) reach the number
of nodes the tree had at the previous reorganization (i.e the
tree size has been doubled since the last reorganization). To
reorganize the tree, a new array with size equal to the tree size
is allocated (memory chunk #2). Then, it is being filled with
the adjacent memory blocks of the neighboring nodes of the
tree (i.e. with the memory blocks of the memory chunk #1
and the ones stored in the address-list). Finally, the previous
address-list and the previous array are deallocated and a new
empty address-list is created.

This optimization technique has the obvious drawback of

the memory overhead, which can be observed as spikes in the
application’s memory footprint during the tree reorganization.
The spike is observed when a new array is allocated in the
memory and ends when the old array is deallocated (i.e. when
the memory chunk #1 and memory chunk #2 of 3 coexist in
the memory). The execution time overhead depends on the
number of tree nodes that are copied, so it is related with the
tree size. These overheads may or mayhe two data structures
t not be acceptable, depending on the system’s memory avail-
ability and the real-time constraints. Nevertheless, we consider
this approach a fair performance-memory trade-off, since our
experiments show large execution time improvements.

Another advantage of this method, is that it can be applied
in all pointer-based data structures, in which the node size
is comparable to that of the cache line and (aside from the
memory footprint spikes), it has almost the same memory
requirements with the non-cache optimized versions of the
data structures. Based on this technique, we implemented
two versions of the aforementioned data structures: a cache
conscious Patricia trie and a Ternary tree, which we integrated
in the DDTR library.

Hat-trie is based on the idea that a node can be either a
simple trie-node or a bucket. Trie-nodes have a flag, like the
Ternary node, but instead of three pointers, it contains an array
of pointers. The leaves of the Hat-trie are usually buckets that
contain part of the strings. A bucket is a practically a hash table
in the form of an array to take advantage of spatial locality and
to give the data structure efficient cache conscious behavior.

V. EVALUATION OF THE EXTENDED DDTR APPROACH

We evaluated the extended DDTR methodology using two
modern embedded chips and a set of real-world benchmarks,
along with synthetic ones. First, we describe in brief the
specifications of the two chips and the experimental setup.
Finally, we proceed with the description of the results.

A. Experimental Setup

Our goal was to evaluate the extended DDTR methodology
in platforms with different memory hierarchies. The first
platform we used for the evaluation is the Freescale i.MX6
[13], which is a 4-core ARM-based embedded chip. It contains
two levels of cache memory and an 1GB DDR3 RAM. The
second one is the Myriad chip designed by Movidius Ltd.
and normally acts as a low-power co-processor in mobile
devices, smartphones and wearable gadgets [12]. It integrates
8 VLIW cores, which access an 1MB shared SRAM memory.
In contrast with the Freescale chip, no cache exists between
the cores and the shared memory.

The evaluation of the extended DDTR methodology was
made through a variety of synthetic and real-world datasets.
The synthetic benchmarks consist of custom testcases, of 10
million operations each one. The real-world benchmarks are an
IP and a set of dictionary datasets. The IP dataset is composed
of requests made to servers for the 1998 World Cup and was
taken from the Internet Traffic Archive [14]. It is composed
of three million IP addresses, which 4% are unique. The
dictionary datasets are taken from real dictionaries of various
languages, utilized in the WinEdt text editor [15] and contains
unique string entries. In the Myriad experiments, we run only

4

Synthetic 10% updates - Freescale
M
e
m
o
ry

U
ti
li
z
a
ti
o
n
(M

B
)

Throughput (operations/sec)

Hat-trie

Ternary-cache-opt

0

5

10

15

20

25

30

35

0 20000 40000 60000 80000 100000 120000 140000 160000 180000

Ternary

Ternary-cache-opt

Hat-trie

Patricia

Patricia_cache-opt

Ternary

Solutions of the

existing methodology

New solutions in the

extended methodology

Legend:

Fig. 4. Throughput vs. memory utilization of the synthetic benchmark with
10% update operations in the Freescale board.

0

50

100

150

200

250

0 10000 20000 30000 40000 50000 60000 70000 80000

Ternary

Ternary-cache-opt

Hat-trie

Patricia

Patricia_cache-opt

Synthetic 80% updates - Freescale

M
e
m
o
ry

U
ti
li
z
a
ti
o
n
(M

B
)

Throughput (operations/sec)

Ternary-

cache-opt

Hat-trie

Patricia

Legend:

Fig. 5. Throughput vs. memory utilization of the synthetic benchmark with
80% update operations in the Freescale board.

a part of each benchmark, due to low on-chip memory size
that is restricted to 1MB.

The metrics we used to evaluate each implementation are
the throughput (i.e. operations per second) and the memory
footprint. Additionally, we present results in respect with the
performance and memory overhead of the cache conscious
implementation that occurs during the tree reorganization.

B. Experimental Results

In this subsection we present and analyze the experimental
results of applying the extended DDTR methodology in various
benchmarks.

1) Synthetic Datasets: We performed two experiments us-
ing synthetic benchmarks in the Freescale board, which are
presented in Fig.4 and Fig.5. In the first one the updates are
10% of the total operations, while in the second they are 80%.

In the first experiment in Fig.4, there are three optimal
implementations, namely the Ternary tree, the cache conscious

0

5000

10000

15000

20000

25000

0 200000 400000 600000 800000 1000000 1200000

Ternary

Patricia

Hat-trie

Synthetic 10% updates - Myriad

PatriciaM
e
m
o
ry

U
ti
li
z
a
ti
o
n
(B

)

Throughput (operations/sec)

Hat-trie

Ternary

Legend:

Fig. 6. Throughput vs. memory utilization synthetic benchmark with 10%
update operations in the Myriad board.

Ternary tree (Ternary-cache-opt) and the Hat-trie. The highest
throughput is achieved by the Hat-trie implementation (35%
higher in comparison with the Patricia). The main reason is
the Hat-trie provides faster look-up in comparison with the
other implementations. However, the Ternary tree provides the
lowest memory footprint, by 18.5% in comparison with the
Hat-trie. Another important observation is the fact that the
cache conscious versions outperform the corresponding non-
optimized, by up to 34%. The fact that the specific benchmark
has a small number of updates, favors the cache-optimized
implementations.

In the second benchmark in Fig.5, the optimal implementa-
tions are the Hat-trie, the cache conscious Ternary tree and the
Patricia. Hat-trie provides the highest throughput, by 39% in
comparison with the Patricia implementation. It is interesting
to notice that the cache-optimized implementations throughput
is closer to that of the Hat-trie, than in the previous experiment.
Indeed, the advantage of the Hat-trie, which is the fast lookups,
is lost in this experiment, where the updates are the dominant
operations.

The corresponding evaluation of the synthetic benchmarks
in Myriad is presented in Fig.6 and Fig.7. The cache-conscious
optimizations are omitted in the Myriad experiments, due to
the lack of cache memory in the Myriad chip. In the first exper-
iment, where the lookup operations are dominant, the Ternary
tree provides the highest throughput (22% in comparison with
the Patricia). However, the Patricia implementation is the one
with the lowest memory utilization. In the second experiment,
in which the update operations dominate, the Ternary tree and
the Hat-trie are the optimal implementations. An interesting
observation is the fact that the lack of cache memory leads to
low Hat-trie performance in both experiments. Therefore, the
results a lot different in comparison with the corresponding
Freescale board experiments.

2) IP Datasets: The IP benchmark contains 3 million IP
addresses, in which 4% are unique. The results on the Freescale
chip are presented in Fig.8.

The overwhelming percentage of lookup operations leads

5

0

10000

20000

30000

40000

50000

60000

70000

80000

0 100000 200000 300000 400000 500000 600000 700000 800000

Ternary

Patricia

Hat-trie

Synthetic 80% updates - Myriad

Ternary

Hat-trie

M
e
m
o
ry

U
ti
li
z
a
ti
o
n
(B

)

Throughput (operations/sec)

Legend:

Fig. 7. Throughput vs. memory utilization of the synthetic benchmark with
80% update operations in the Myriad board.

0

1

2

3

4

5

6

7

0 50000 100000 150000 200000 250000 300000

Ternary

Ternary-cache-opt

Hat-trie

Patricia

Patricia_cache-opt

IP Benchmark - Freescale

M
e
m
o
ry

U
ti
li
z
a
ti
o
n
(M

B
)

Throughput (operations/sec)

Hat-trie

Patricia-

cache-opt

Legend:

Fig. 8. Throughput vs. memory utilization of the IP benchmark in the
Freescale board.

to very high throughput for the Hat-trie implementation (29.6%
in comparison with the Patricia-cache-opt). We also notice
that the cache-optimized ternary and Patricia implementations
lead to 12% and 17% higher throughput, than the non-
optimized implementations. The Patricia implementations have
the smallest memory footprint: 3.5% lowest memory footprint
in comparison with the Hat-trie. Indeed, Patricia tries are
capable of storing strings with many similarities (like IP
addresses) in a very memory efficient way.

In respect with the Myriad board, the corresponding results
for the IP benchmark are presented in Fig.9. As in the synthetic
experiments, the Ternary tree provides the highest throughput
(18.5% against the Hat-trie), while the Hat-trie, the lowest
memory consumption.

3) Dictionary Datasets: We have made several experiments
with the dictionary datasets, which are presented in Fig.10,
Fig.11 and Fig.12. The first experiment contains only update
operations and the word insertion requests are coming in an

0

5000

10000

15000

20000

25000

30000

35000

40000

0 200000 400000 600000 800000 1000000 1200000

Ternary

Patricia

Hat-trie

IP Benchmark - Myriad

Ternary

Hat-trieM
e
m
o
ry

U
ti
li
z
a
ti
o
n
(B

)

Throughput (operations/sec)

Legend:

Fig. 9. Throughput vs. memory utilization of the IP benchmark in the Myriad
board.

0

5

10

15

20

25

0 20000 40000 60000 80000 100000 120000 140000

Ternary

Ternary-cache-opt

Hat-trie

Patricia

Patricia_cache-opt

Dictionary 100% updates,

alphabetical ordering - Freescale

M
e
m
o
ry

U
ti
li
z
a
ti
o
n
(M

B
)

Throughput (operations/sec)

Ternary

Hat-trie
Legend:

Fig. 10. Throughput vs. memory utilization of the dictionary benchmark
with 100% update operations and strings being inserted in alphabetical order,
in the Freescale board.

alphabetical order. In the second one, the order is random,
while in the last one, there are 65% lookup operations.

The optimal implementations in Fig.10 and Fig.11, are
the Ternary trie and the Hat-trie. In the first experiment, the
Ternary tree leads to 23% higher throughput in comparison
with the Hat-trie, while the Hat-trie provides 18% lower
memory consumption. In the second one (Fig.11), the corre-
sponding differences are 8.9% for the performance, while the
memory consumption is the same. Indeed, the insertion order
matters only for the performance. When the dataset is sorted,
consecutive words have the same prefixes, so they follow the
same path in the tree in order to find the correct insertion spot.
Since it is very likely that the path is already in the cache, the
performance is higher, in comparison with the unsorted dataset
in Fig.11. Finally, in Fig.12, where the lookup operations are
dominant, the Hat-trie is the optimal implementation both in
terms of throughput and memory footprint.

6

0

5

10

15

20

25

0 10000 20000 30000 40000 50000 60000 70000 80000

Ternary

Ternary-cache-opt

Hat-trie

Patricia

Patricia_cache-opt

M
e
m
o
ry

U
ti
li
z
a
ti
o
n
(M

B
)

Throughput (operations/sec)

Dictionary 100% updates,
random ordering - Freescale

Ternary

Hat-trie

Legend:

Fig. 11. Throughput vs. memory utilization of the dictionary benchmark
with 100% update operations and strings being inserted in random order, in
the Freescale board.

0

5

10

15

20

25

0 20000 40000 60000 80000 100000 120000

Ternary

Ternary-cache-opt

Hat-trie

Patricia

Patricia_cache-opt

Dictionary 35% updates,
random ordering - Freescale

M
e
m
o
ry

U
ti
li
z
a
ti
o
n
(M

B
)

Throughput (operations/sec)

Hat-trie

Legend:

Fig. 12. Throughput vs. memory utilization of the dictionary benchmark
with 35% update operations and strings being inserted in random order, in the
Freescale board.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 100000 200000 300000 400000 500000 600000

Ternary

Patricia

Hat-trie

Dictionary 100% updates,

alphabetical ordering - Myriad

Throughput (operations/sec)

M
e
m
o
ry

U
ti
li
z
a
ti
o
n
(B

)

Hat-trie
Legend:

Fig. 13. Throughput vs. memory utilization of the dictionary benchmark
with 100% update operations and strings being inserted in alphabetical order,
in the Myriad board.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 100000 200000 300000 400000 500000 600000

Ternary

Patricia

Hat-trie

Dictionary 100% updates,

random ordering - Myriad

Throughput (operations/sec)

M
e
m
o
ry

U
ti
li
z
a
ti
o
n
(B

)

Hat-trie

Ternary

Legend:

Fig. 14. Throughput vs. memory utilization of the dictionary benchmark
with 100% update operations and strings being inserted in random order, in
the Myriad board.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 100000 200000 300000 400000 500000 600000 700000 800000

Ternary

Patricia

Hat-trie

Dictionary 35% updates,
random ordering - Myriad

Throughput (operations/sec)

M
e
m
o
ry

U
ti
li
z
a
ti
o
n
(B

)

Ternary

Hat-trie

Legend:

Fig. 15. Throughput vs. memory utilization of the dictionary benchmark
with 35% update operations and strings being inserted in random order, in the
Myriad board.

The corresponding results on the Myriad board are pre-
sented in Fig.13, Fig.14 and Fig.15. As in the previous experi-
ments, the Hat-trie and the Ternary tree provide the highest
throughput. However, the Ternary tree requires much more
memory than the other two implementations. The high memory
requirements of the Ternary tree in Myriad are noticed in all
experiments. The reason is mostly related to the application,
rather than in the Myriad memory architecture. Since we
executed in Myriad only a part of the benchmark, the fact that
the Ternary stores in each tree node only a character, leads to
increased memory requirements. However, this is not the case
with the Patricia, which it can store a whole string in each
node.

4) Overhead of Cache Conscious Implementations: Table
II presents the execution time and the memory footprint over-
head of the cache conscious implementation for all datasets.
As stated before, these overheads occur during the tree reor-
ganization. More specifically, the execution time overhead is
the percentage of time that is spent for the tree reorganization,

7

TABLE II. EXECUTION TIME AND MEMORY FOOTPRINT OVERHEAD

OF CACHE CONSCIOUS IMPLEMENTATION ON FREESCALE BOARD.

Execution time Memory size

overhead overhead (MB)

Ternary Patricia Ternary Patricia

cache-opt cache-opt cache-opt cache-opt

Synthetic

10% upd. 5.7% 5.38% 22 28

Synthetic

80% upd. 20% 18.4% 138 168

IP dataset 4.6% 3.6% 3.7 2.6

Dict. 100% upd.

alph. order 35% 15.3% 14.3 18.5

Dict. 100% upd.

random order 36% 20.3% 14.3 18.5

Dict. 35% upd.

random order 20% 12.1% 16.2 32

during the whole execution of each benchmark. The memory
footprint overhead is the memory utilization spike that occurs
during the copy of the tree, when the new array is allocated
and before the previous array is deleted from the memory.

In respect with the performance overhead, it largely de-
pends on when the reorganization is being instructed. For
instance, if the last reorganization was made near the end of
the benchmark execution, the performance overhead is high,
since there are not enough lookup operation to take advantage
of the optimized tree. (This can be observed in the dictionary
datasets). However, in the IP dataset, that was not the case and
the performance overhead was very small. In respect with the
memory overhead, it obviously depends on the size of the tree
that is being copied. If the extra amount of memory needed is
not a constraint, then the overhead is not an issue.

C. Discussion of Experimental Results

There are apparently some general principles regarding the
data structures behavior under different application require-
ments. For example, we noticed in all experiments that the
Hat-trie performs well when there is a large number of lookup
operations. Also, in the dictionary benchmarks, the word
ordering affects the performance. However, we also noticed the
very different behavior of the same implementations between
the two platforms with different memory hierarchies. Indeed,
the existence of cache plays a major role in the performance
results of the data structure implementations.

The improvements made in the DDTR methodology by the
integration of the cache-conscious implementations extended
the methodology by making it able to adhere to hardware-
related constraints. In many cases (like in the IP benchmark
and the synthetic ones), some Pareto points would not be ”visi-
ble” with the previous DDTR methodology. In other words, the
methodology is adapted, not only to the application constraints,
but also to the hardware constraints and specifications. Thus,
the set of data structure implementation solutions increases,
providing the developer with more flexibility.

Finally, the cache conscious implementations through the
data structure reorganization can be a valid alternative to
the generic ones. In many cases (e.g. in the IP benchmark
in Fig.8) are optimal in terms of throughput and memory
requirements. If the performance and the memory overhead is

not a constraint, then such implementations can achieve high
performance by the effective cache utilization.

VI. CONCLUSION AND FUTURE WORK

The DDTR methodology provides and efficient way to
refine the data structure implementations of dynamic applica-
tions. So far, the methodology was limited to generic array
and list implementations. However, the extended approach
provides tree implementations which are refined according
to the hardware specifications of the underlying platform.
Therefore, new Pareto optimal data structure implementations
that they were not be available in the previous version, appear
in the new one. In the future, we plan to extend the DDTR
library with more tree implementations and evaluate it in more
embedded platforms with various memory hierarchies.

ACKNOWLEDGEMENT

This work was supported by the EC through the FP7-ICT
project 612069, HARPA (Harnessing Performance Variability).

REFERENCES

[1] Intel corp., Intel Atom Processor E6x5C Series
Product Preview Datasheet, Tech. rep., 2010, URL
http://www.arrownac.com/offers/intel/e6xx/E6x5C%20Datasheet.pdf.

[2] W. Wolf, High-performance embedded computing: architectures, appli-
cations and methodologies, Morgan Kaufmann, 2007.

[3] N. Rajovic et al ”Tibidabo: making the case for an ARM-based HPC
system,” Future generation computer systems, Elsevier, Amsterdam,
2013.

[4] L. Papadopoulos, C. Baloukas and D. Soudris, ”Exploration methodology
of dynamic data structures in multimedia and network applications
for embedded platforms,” Journal of Systems Architecture, Embedded
Systems Design 54(11), pp. 1030-1038, 2008.

[5] L. Benini, A. Macii, E. Macii, M. Poncino, ”Increasing energy efficiency
of embedded systems by application-specific memory hierarchy genera-
tion,” IEEE Design and Test of Computers, pp. 7485, AprilJune 2000.

[6] S. Steinke et al., ”Assigning program and data objects to scratchpad for
energy reduction,” in Proc. DATE Conference, IEEE Computer Society,
Washington, DC, USA, 2002.

[7] M. Leeman et al., ”Automated dynamic memory data type implementa-
tion exploration and optimization,” in Proc. of the IEEE Computer Soci-
ety Annual Symposium on VLSI, IEEE Computer Society, Washington,
DC, USA, 2003.

[8] N. Askitis, R. Sinha, ”HAT-trie: A Cache-conscious Trie-based Data
Structure for Strings,” in Proc. Thirtieth Australasian Computer Science
Conference (ACSC), pp.97-105, 2007.

[9] P. Prokopec, N.G. Bronson, P. Bagwell and M. Odersky, ”Concurrent tries
with efficient non-blocking snapshots,” Proc. Symposium on Principles
and Practice of Parallel Programming, pp. 151-160, 2012.

[10] T. M. Chilimbi, M. D. Hill, and J. R. Larus, Making pointer-based data
structures cache conscious, Computer, vol 33(12): 6775, 2000.

[11] L. Li, L. Gao and J. Xue, ”Memory coloring: a compiler approach for
scratchpad memory management,” Proc. PACT, pp. 329-338, 2005.

[12] D. Moloney ”1TOPS/W software programmable media processor,”
HotChips HC23, Stanford, 2011.

[13] Freescale Semiconductor, i.MX 6Dual/6Quad Applications Processors
for Industrial Products Datasheet, Freescale Semiconductor, 2014, URL
http://cache.freescale.com/files/32bit/doc/data sheet/IMX6DQIEC.pdf.

[14] The Internet Traffic Archive, URL http://ita.ee.lbl.gov/.

[15] WinEdt editor, URL http://www.winedt.com/.

8

