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Abstract—Manipulating big-data entries of emerging server
workloads requires a design paradigm shift towards more ag-
gressive system-level architecture solutions. From software per-
spective, the MapReduce framework is a prominent parallel
data processing tool as the volume of data to analyze grows
rapidly. FPGAs can be used to accelerate the processing of
data and reduce significantly the power consumption. However,
FPGAs have not been deployed in data centers due to the high
programming complexity of hardware. In this paper we present
HLSMapReduceFlow, i.e. a novel reconfigurable MapReduce ac-
celerator that can be scaled-up to data centers and it can speedup
the processing of Map computation kernels, while promising
minimum energy footprint and high programming efficiency due
to the use of HLS. We propose the complete decoupling of
MapReduce’s tasks data-paths to distinct buses, accessed from
individual processing engines. Such a dataflow approach implies
a holistic C/C++ to RTL domain-level MapReduce transition. In
this work, we further extent HLS tools, with systematic source-
to-source code annotation of HLS optimization directives, by
adding as a state-of-art system-level implementation toolflow. The
proposed architecture is implemented, mapped and evaluated to a
Virtex-7 FPGA and shows that the proposed scheme can achieve
up to 4.3x overall throughput improvement in MapReduce ap-
plications, while offering two orders of magnitude power/energy
improvements compared to a high-end multi-core processor.

Keywords - MapReduce, Hardware accelerator, High-Level
Synthesis, Reconfigurable computing, Dataflow computing

I. INTRODUCTION

Breaking the exascale barrier [1] has been recently iden-
tified as the next big challenge in computing systems. Ma-
nipulating huge data entries requires a design paradigm shift
towards more aggressive system-level architecture solutions.
One of the main promising programming frameworks for
processing large data sets in the data centers and other clusters
of computers is the MapReduce framework [2]. MapReduce
was firstly inspired by Google for application development on
data-centers with thousands of servers. It allows programmers
to write functional-style code that is automatically parallelized
and scheduled in a distributed system.

MapReduce can be used to easily utilize the resources
of large distributed systems for processing large data sets.
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However, such large data sets, that the data centers have
to process under constrained time and energy budgets, have
increased significantly, due to emerging applications like big
data and cloud computing. The increase of the traffic in the data
centers has also resulted to higher power consumption. The
server processors need to provide higher throughput without
consuming excessive power. Currently, one of the main chal-
lenges in the data center operators is the power consumption
of the servers that account for over 45% of the overall power
consumption in the data centers.

Therefore, novel architectures are required that can increase
the performance of the data centers and also be more energy
efficient. FPGAs can be utilized to increase the performance
of the systems and also can be used to reduce the total power
consumption due to the specialized accelerators for specific
tasks. However, the main drawback of utilizing FPGAs in the
data centers is the high programming complexity. In this paper,
we present a novel framework that allow the seamless develop-
ment of FPGA-based hardware accelerator for data centers by
extending the current HLS toolflow to include the MapReduce
framework. We develop several hardware accelerators for
typical MapReduce application using the proposed framework
and we compare the performance and the energy efficiency
with high-end multi-core processors. The main contributions
on this paper are the followings:

e anovel HLS-based MapReduce dataflow architecture,

e development of several hardware accelerators for typi-
cal MapReduce application based on the HLS-enabled
MapReduce dataflow architecture

e performance evaluation on typical MapReduce ap-
plications (wordcount, histogram, etc.) on a Virtex7
FPGA that shows up to 4.3x throughput gains and

e up to two orders of magnitude energy consumption
savings

The main advantage of the proposed scheme is that we
utilize the available resources of the FPGA to achieve higher
parallelism. In the terms of raw performance the proposed
scheme is comparable to the General Purpose Processor (GPP),
but by exploiting the parallelism and much lower clock
frequency compared to GPP, we can achieve much lower
power consumption. The rest of the paper is organized as
follows. Section 2 reviews prior art regarding MapReduce
implementations, while Section 3 presents our FPGA-based



implementation. Section 4 presents the evaluation results and
Section 5 concludes the paper.

II. RELATED WORK

We survey related work on accelerator-based implemen-
tations of MapReduce framework. In [3], a reconfigurable
MapReduce framework is presented but the proposed scheme
is implemented as a custom RTL-design that is used to im-
plement only the RankBoost application entirely on an FPGA.
Although the basic architecture of this work is very close to
the one presented in this paper, we would like to note that the
proposed approach is implemented in C/C++ level and it is
seamlessly synthesized to RTL level using HLS tools, thus its
employment is highly transparent to new applications exploit-
ing MapReduce framework. On the contrary, in [3] both of the
Map and Reduce tasks for a specific application are mapped
to custom RTL logic and thus for any new application a new
design has to be implemented. In [4] a MapReduce Framework
on FPGA accelerated commodity hardware is presented where
a cluster of worker nodes is designed for the MapReduce
framework, and each worker node consists of commodity
hardware and special hardware. Although this approach offers
high flexibility and run-time optimization of the framework, it
still increases the programming difficulty of both custom-RTL
and CPU for every node, while new applications have to be
custom tailored to such a diverse hybrid-node implementation
layer. Regarding general purpose GPU platforms, MapReduce
framework was also explored [5]. “However, GPU prefers
coalesced memory access pattern, which makes it fumble while
dealing with complex data structure and the SIMT architecture
restricts its computation performance to handle irregular ap-
plications” [3]. Authors in [6] adopted a hybrid architecture
approach combining both GPU and FPGA to implement a
MapReduce framework, which leaves scheduling work to the
host CPU and employs GPU and FPGA for co-processing,
while in [7] a MapReduce framework is implemeted target-
ing to an embedded many-core Network-on-Chip platform.
However, regardless the implementation medium, a recent
MapReduce survey verifies that MapReduce technique shall
complement database management system with scalable and
flexible parallel processing for various data analysis such as
scientific data processing [8]. In [9] Microsoft has used FPGAs
to increase the performance of the page ranking applications.
More specifically a medium-scale deployment on a bed of
1,632 servers, measuring its efficacy in accelerating the Bing
web search engine, reported improvements on the ranking
throughput of each server by a factor of 95%. However, until
now the utilization of FPGAs in data centres is limited mainly
due to the high programming complexity of FPGAs. However
this work is a standalone research and currently there is no
wide adoption of FPGAs in the data centers.

In [10], we have previously developed a hardware acceler-
ation unit for the MapReduce framework that can be combined
efficiently with ARM cores in fully programmable platforms .
To develop and evaluate the proposed scheme, authors selected
the Xilinx Zyng-7000 All Programmable SoC, which comes
hardwired with a dual-core Cortex-A9 processor on-board.

In essence, this accelerator was used to alleviate the pro-
cessors from executing the Reduce tasks, and thus executing
only the Map tasks and emitting the intermediate key/value

pairs to the hardware acceleration unit that performs the
Reduce operation. The performance evaluation shows that the
proposed accelerator can achieve up to 1.8x system speedup
of the MapReduce applications. Motivated by these results,
we identify the following performance-boost limitations in this
work:

e Low parallelism exploitation: The partitioner, mapper
and scheduler are controlled by the same on-board
CPU, i.e. ARM Cortex-A9 on Zynq, which may limit
the inherent parallelization opportunity of these tasks.

e High memory conflicts: Although the reduce tasks
may exploit DMA engines to work directly to memory,
still the main framework, including both the MapRe-
duce tasks and the working kernels, have their data-
path on the same AXI bus, thus the memory is over-
populated by read/write (R/W) calls from the multiple
processing threads, which eventually are serialized.

e  Low acceleration opportunity regarding overall system
execution time breakdown, due to the speed-up of
only Reduce step. According to [11], the Reduce
step accounts for less than 5% of the total execution
time in the original implementation of a MapRecude
framework, i.e. Phoenix, using a chip multi-processor
(CMP) with 2, 4 and 8 cores'. The Figure 1 presents
the execution time breakdown between Map, Reduce,
and Merge tasks for the CMP system. It is evident
that the execution time of Map task, where the main
algorithm’s processing occurs, is significantly reduced
by the Phoenix framework, as long as more cores
are employed, which motivate us to investigate ac-
celeration scenarios for map tasks on the coarse-grain
parallelization potential of FPGA devices.

Identifying these issues, we propose the complete de-
coupling of MapReduce’s tasks data-paths to distinct buses,
accessed from individual processing engines, eliminating the
necessity of the supervisor on-board CPU, i.e. the processor-
centric SoC. Such an approach implies a holistic C/C++ to
RTL-level domain-level MapReduce transition. In this work,
we employ HLS tools as a state-of-art system-level imple-
mentation toolflow, in order to examine the performance
exploitation options, yet constrained by the HLS limitations
of such a complex framework.

III. HLSMAPREDUCEFLOW ARCHITECTURE
A. Phoenix MapRecude Framework

We adopt the open-source Phoenix MapRecude framework
[11] as the initial code base of our work. In this framework,
users specify a Map function that processes a key/value pair
to generate a set of intermediate key/value pairs, and a Reduce
function that merges all intermediate values associated with the
same intermediate key. Finally, the last stage merge together
all the key/value pairs. Programs written in this functional
style are automatically parallelized and executed on a large
cluster of computation nodes. The run-time system takes
care of the details of partitioning the input data, scheduling

IThe referred CMP system is based on the UltraSparc T1 multi-core chip
with 8 multithreaded cores sharing the L2 cache.
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Fig. 2. Architecture topology of a) original MapRecude framework and b) proposed HLSMapReduceFlow.
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Fig. 1. Execution time breakdown for a CMP system on Phoenix MapRecude
framework [11].

the program’s execution across a set of computation nodes,
providing fault-tolerance, and managing the required inter-
machine communication. This allows programmers without
any experience of parallel and distributed systems, to easily
utilize the resources of a large distributed system.

Map stage

Reduce stage

Fig. 3. The MapReduce programming framework.

The Figure 3 shows the basic data flow for the runtime
system. The runtime is controlled by the scheduler, which is
initiated by user code. The scheduler creates and manages the
threads that run all Map and Reduce tasks. It also manages
the buffers used for task communication. After initialization,
the scheduler determines the number of cores to use for this
computation. For each core, it spawns a worker thread that is
dynamically assigned some number of Map and Reduce tasks.

To start the Map stage, the scheduler uses the Splitter to
divide input pairs into equally sized units to be processed
by the Map tasks. The Splitter is called once per Map task
and returns a pointer to the data the Map task will process.
The Map tasks are allocated dynamically to workers and each
one emits intermediate < key,value > pairs. The Partition
function splits the intermediate pairs into units for the Reduce
tasks. The function ensures all values of the same key go to
the same unit. Within each buffer, values are ordered by key to
assist with the final sorting. At this point, the Map stage is over.
The scheduler must wait for all Map tasks to complete before
initiating the Reduce stage. Reduce tasks are also assigned to
workers dynamically, similar to Map tasks. The one difference
is that, while with Map tasks we have complete freedom in
distributing pairs across tasks, with Reduce we must process
all values for the same key in one task. As the last step, the
final output from all tasks is merged into a single buffer, sorted
by keys.

B. Dataflow FPGA-based Acceleration

The basic proposed architecture scheme is inspired by our
group’s prior novel implementation, presented in [10]. Authors
developed a MapReduce configurable accelerator which is
used to alleviate the processors from executing the Reduce
tasks, and thus executing only the Map tasks and emitting
the intermediate key/value pairs to the hardware acceleration
unit that performs the Reduce operation. On top of this
architecture we further built the acceleration infrastructure for
the Map tasks. Figure 2 shows a high-level differentiator of
the proposed architecture, compared to the current state of art.

Originally, the Map and Reduce tasks are running as
software threads on the CPU cores of the available MapRecude
deploying infrastructure (Figure 2(a)). The success of such an
architecture relies on the availability of a large shared-memory
that facilitate communication without excessive data copying.
Moreover, at runtime, an efficient scheduler is highly required
to schedule tasks dynamically across the available processors
in order to achieve load balance and maximize task throughput.
In the previous approach we highlight two major drawbacks:

e A shared-memory is usually available in mono-
lithic datacenter architectures. Such architectures are



composed by single-board/single-die many-core sys-
tems (CMP, SMP). However, there is limited shared-
memory organization support for clusters and cloud
datacenter topologies. Thus in case of inefficient data
splitting, the shared data have to travel along different
datacenter nodes, reserving resources and spending
energy. Such an inefficiency in data splitting procedure
may be the case in which the same subset of data is
required by two Map steps which have been scheduled
in long-distance computation nodes.

e So far, the state-of-art MapReduce implementations
do not provide an efficient scheduler that checks the
inter-application control and data flow graphs, prior
to scheduling. Thus, it turns out that there is not real
application partitioning and scheduling among compu-
tation nodes, but rather a quick-and-dirty application’s
runtime slicing, followed by a first-come-first-serve
distribution on computation nodes.

We propose to create customized Map accelerators that
exploit high data locality and thus eliminate the need of large
shared-memory architectures or distributed systems. Instead of
brute-force arbitrary splitting the input data to multiple subsets
for further scheduling to CPUs, we select to split the input
according to the application’s data processing flow, in a way
that optimized chunks of data are processed independently
by distinct accelerators. Using this approach we manage to
increase the system’s throughput by a) increasing data locality,
b) decreasing inter-connection latency among computation
nodes and c) increasing computation parallelism by exploiting
dataflow processing.

Specifically, we investigate the optimal point of dataflow
processing for every application, i.e. splitting and scheduling
is based on control-flow-graph (CFG), data-flow-graph (DFG)
and variable liveness analysis (LA). Based on such infor-
mation, we built the corresponding optimal Map accelerator
engines. Figure 4(a) shows the basic HLSMapReduceFlow
architecture. While, this looks similar to the original Phoenix
architecture, we highlight in Figure 4(b) the novel architecture
modifications of our approach. Firstly, the on-board available
block RAM (BRAM) of the FPGA is organized in distinct
memory banks. Every bank has its own unique address and
data bus, while it is accessed by only one computation node.
This scheme allows for full parallel simultaneous operation of
the computation nodes in FPGA.

The critical step of this procedure relies on the efficient
mapping of application’s parallel-ready computation paths. For
this step we employ the Vivado HLS tool. Apart from typical
high level synthesis steps, i.e. resource binding, scheduling
etc., Vivado HLS also provides a high number of architecture
exploration options through the source code annotation with
special pre-processor directives. In this work we force the
exploration with the DATAFLOW, INLINE and ARRAY PAR-
TITION directives.

Firstly we employ the partition, map and reshape directives
in order to re-configure arrays on the interface they are
accessed. Arrays are partitioned into multiple smaller arrays,
each implemented with its own interface. This includes the
ability to partition the array into fine grain elements. On
the function interface, this results in a unique port for every

element in the array. This provides maximum parallel access,
but creates many more ports and may introduce routing issues
in the hierarchy above. By partitioning the arrays, on which
input data of every map task are stored, we reduce the
possibility of simultaneous access of the same data, given
the inherent locality of the application, which may exploit
parallelism. Locality is managed by adjusting the granularity
and assignment of parallel tasks.
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Fig. 5. Forcing dataflow exploration from control-flow algorithm description
with Vivado HLS

After having partitioned the input memory, we force the
micro-architecture exploration within Vivado HLS, following
a dataflow computation model. From the definition back in 80’s
[12], we consider dataflow machines to be all programmable
computers of which the hardware is optimized for fine-grain
data-driven. Fine grain means that the processes that run in
parallel are approximately of the size of a conventional ma-
chine code instruction. We deploy a fully spatial architecture
for every map task by applying recursive inline option of
Vivado HLS, i.e. #pragma AP inline recursive. Although this
approach leads to increased resources utilization, it allows
for parallel instances of shared sub-functions and removed
hierarchy of sub-functions, which leads to logic optimization
across function boundaries and improved latency/interval by
the reduction of function call overhead.

After the above optimizations, we have already forced the
creation of fine-grain fully-parallel map tasks which does not
share neither data nor computation elements among them.
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k-port and j-port banks for the k-map and j-reduce tasks respectively.

The last optimization of the proposed scheme deals with the
controlling of the the way the input data are fed to these
tasks. We force a dataflow approach. Figure 5 shows the basic
idea behind this approach. The input code is decomposed by
Vivado’s back-end LLVM compiler to basic blocks, i.e. single-
entry single-exit section of code, connected through a control-
flow network, i.e. control-flow-graph (CFG). Having already
applied above optimizations, we further force the dataflow
optimization, i.e. #pragma AP dataflow which takes a series
of sequential tasks (functions and or loops) (Figure 6(a))
and creates a parallel process architecture from it (Figure
6(b)). Dataflow optimization in Vivado HLS is a very powerful
method for improving design throughput. The channels shown
in Figure 6(a) ensure a task is not required to wait until the
previous task has completed all operations before it can begin.
Figure 6(b) shows how DATAFLOW optimization allows the
execution of tasks to overlap, increasing the overall throughput
of the design and reducing latency.

C. HLSMapReduceFlow Methodology for Vivado-HLS

Figure 7 shows an overview of the proposed HLSMapRe-
duceFlow design and verification flow. The flow is based on
Xilinx Vivado-HLS, a state-of-art and industrial strength HLS
tool. The HLSMapReduceFlow extension is applied explicitly
to the high-level source code of the application, thus it keeps
minimum implementation overhead to the designers. A source-
to-source code modification stage is the step where the original
code is transformed to synthesizable one. These transforma-
tions cover limitations regarding the lack of dynamic memory
management support, pointer arithmetic, complete ANCI C
functions etc, in Vivado HLS. Moreover this step includes
the process of architecture optimization directives insertion.
Currently, this step is performed manually. An automated flow
is considered a highly useful utility for wide and transparent
adoption in data centers deployment. The transformed code
is augmented by the HLSMapReduceFlow function calls, i.e.
Emit_Intermediate_accelerator(key,value) and it is synthesized

HLSMapReduceFlow dataflow architecture: Every dataflow computation node is working in its unique memory. The system memory is partitioned to
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into RTL implementation through the back-end of Vivado HLS
tool.

D. Vivado-HLS Limitations for MapRecude

During the development of HLSMapReduceFlow we faced
several limitations regarding the implementation of the com-
plex Phoenix’s API in Vivado HLS. These limitations are
reported as follows:

e Dynamic Memory Management: The Phoenix



TABLE 1.

APPLICATIONS CHARACTERIZATION

Domain | Kernel [ Description | Parameters | Bytes/Iteration
Image Processing Histogram Determine frequency of image RGB channels. | Mj;,. = 640x480 307,200
Scientific Computing | Matrix Mul. | Dense integer matrix multiplication. My;.. = 100x100 40,000
Enterprise Computing | String Match | Search file with keys for 4 encrypted words. | Nieys = 307,200 307,200
Enterprise Computing | Word Count | Counts occurrence frequency of words in file. | Nyorgs = 50,000 90,094
Artificial Intelligence | Linear Regr. | Compute the best fit line for a set of points. Npoints = 100,000 400,000
Artificial Intelligence | PCA Principal components analysis on a matrix. Myg;.e = 250%250 250,000
Artificial Intelligence | Kyeans Clustering 3-D data points into 10 groups Npoints = 20,000 240,000

Standard Vivado HLS flow

HLSMapReduceFlow-Extension
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Fig. 7. Proposed extension on Vivado HLS flow to support MapReduce
framework for FPGA-based systems.
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Target FPGA technology
libraries
I

framework highly uses malloc/free calls for effective
memory operations and reduced run-time footprint
during map and reduce tasks. All DMM functions are
not supported by Vivado HLS tools. We replace DMM
calls with static code allocation on the heap of every
application’s code segment. This replacement affects
the BRAM resource utilization, while it also forces
the predefined at compile time variable definition.
When the application uses dynamic size for specific
variables, e.g. the length of word that is searched
in Word Count application, then the designer has to
set a static maximum variable’s size, thus decreasing
runtime flexibility.

e  Pointer Manipulation: The Phoenix framework uses
direct memory addressing, using pointer-based mem-
ory access. Also it uses arithmetic operations, arith-
metic re-interpretation, and pointer casting. However,
none of these features is available in Vivado HLS. We
had to refactor the code by eliminating such coding
forms.

e Data structures: The Phoenix framework uses a lot
of complex data structures, i.e. structs with array
and pointer elements. While scalar pointers that point
to statically reserved data are normally deployed in

Vivado HLS, the same does not happen with double
and beyond pointers, i.e. pointer-to-pointer. We had to
refactor such complex data types to simple scalar or
simple pointer based structures.

e ANCI C synthesizable subset: The Phoenix frame-
work uses many functions of ANCI C that are not
synthesizable by Vivado HLS., e.g. limitation of mem-
ory copy operations such as memmove, memcpy, etc.,
string functions, e.g. strcmp, strlen, strcpy, toupper,
etc. and math functions, e.g. rand, sort, etc.. For all of
these functions we developed synthesizable versions,
working on byte/cycle rate. Depending on application
characteristics, we customized these functions to be
more efficient using pipelining and loop unrolling
techniques.

IV. EXPERIMENTAL RESULTS

This section describes the experimental setup we used
to evaluate HLSMapReduceFlow, as well as the respective
obtained results. We evaluated the efficiency of the proposed
HLSMapReduceFlow framework considering a MapRecude
accelerator for a FPGA-based architecture, targeting to emerg-
ing application domains, e.g. artificial intelligence, scientific
computing, enterprise computing etc. In this paper, we consid-
ered six applications evaluation test-bed of Phoenix MapRe-
duce framework for shared-memory systems [11]. The perfor-
mance evaluation covers a representative set of application that
typically use the MapReduce framework. The characterization
setup of the employed applications is summarized in Table I.

To evaluate our framework in performance and scalability,
we build up a testbed for the HLSMapReduceFlow. Since the
main scope of this work is the acceleration of Map tasks
(95% of total execution time in Phoenix), we explore different
architecture exploiting Map accelerators in the FPGA, while
for the following measurements we have used only one Reduce
task. Also we do not measure communication overhead for
transferring input data streams to the FPGA. Instead we use the
on-board FPGA memory to store input streams. This scheme
may not be a complete architecture for datacenters where
new requests are coming constantly. However in this work
we study the performance micro-architecture exploitation by
instantiating dataflow-based Map accelerators in the FPGA,
regardless the input source and the way input data are reaching
the Map tasks.

Figure 8 shows the self overall performance-scalability
tradeoff results for every employed application, when we use,
or not, the HLSMapReduceFlow framework. Every horizontal
axis scales the Map accelerators from single-instance to the
maximal number of accelerators. This number is limited by
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Fig. 8. Self performance-scalability tradeoff of HLSMapReduceFlow framework.

the reserved FPGA resources of applications. As shown by
the comparison of the architecture without the MapRecude
framework (No-MR), and the 1-Map accelerator instance, the
implementation of HLSMapReduceFlow framework introduces
a cost in both resources and execution time by a factor of 18%
and 38% respectively. However, as long as more Map acceler-
ators are instantiated, the performance in terms of throughput
is almost linear boosted. However some applications reach a
saturation point where the instantiation of more accelerators
does not lead to expected speedup. This is the case for String
Match, PCA, Kmeans and Word Count. We found that both the
dynamic behavior of these applications and data dependency
among calculations prevents Vivado HLS for applying effective
dataflow processing optimizations. For instance, the PCA ker-
nel is a streaming application with no dynamism. However its
computations have high data dependencies without equivalent
data locality. Thus, the fine-grain splitting of input data to
data chunks that include elements needed by more than one
map accelerators, causes performance drop due to stalled Map

processing tasks.

In order to provide a more real-word representative com-
parison, we evaluated HLSMapReduceFlow against a high-
end workstation. The workstation is powered by the 8-core
AMD FX-8350 processor clocked at 4GHz. This processor
has a TDP value of 125 Watts. We compiled the employed
applications using GCC compiler (v4.9.2) and run the appli-
cations with glibc runtime linking, in a GNU/Linux (Kernel
3.18.6) 64-bit OS, enabling many compiler omptimizations
(-02), including vector processing ones (SSE, AVX etc.).
The derived measurements for execution time, power and
energy are shown in the first three columns of Table II. The
next four columns show the respective metrics for a system
composed of a Virtex-7 FPGA (XC7VX485T) clocked at
150MHz utilizing the HLSMapReduceFlow framework. The
PC-FPGA communication is established with a PCI Express
3.0 link, offering maximum bandwidth of 8Gbps. The overall
measured time for the FPGA deployment is represented by



TABLE II.

REAL-WORD REPRESENTATIVE COMPARISON BETWEEN HLSMAPREDUCEFLOW-ACCELERATED FPGA AND COMMODITY WORKSTATION.

Framework GNU/Linux 3.18.6 x86-64 / GCC-glibc HLSMapReduceFlow
Platform AMD 8-core FX-8350 4GHz Virtex7-XC7VX485T 150MHz Ratio
Metrics Time(ms) | Power(W) | Energy(J) T,(ms) | T.(ms) | Power(W) [[ Energy(J) T P E
Histogram 344 41.1 14.1 72.2 4.8 1.84 0.13 0.21 0.04 0.009
Matrix Mul/tion 177 41.3 7.3 208 0.6 1.02 0.21 1.17 0.03 0.029
String Match 206 41.6 8.5 95 49 2.33 0.22 0.46 0.06 0.026
Word Count 172 40.8 7.0 84 1.4 1.87 0.16 0.48 0.05 0.023
Linear Reg/sion. 158 41.6 6.6 73 6.4 2.08 0.15 0.46 0.05 0.023
PCA 392 419 16.4 964 4.1 1.17 1.13 2.45 0.03 0.070
Kimeans 435 40.3 17.5 503 3.8 1.03 0.52 1.16 0.03 0.029
Average | 269 | 412 | 11 [ 285 | 37 [ 162 [ 036 [ L06x [ 0.04x | 0.03x
the time for processing on the FPGA, T), and the time for PC- REFERENCES
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