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Abstract—After their success in the high performance and
desktop market, Graphic Processing Units (GPUs), that can be
used for general purpose computing are introduced for embedded
systems on a chip (SOCs). Due to some advanced architectural
features, like massive simultaneous multithreading, static perfor-
mance analysis and high-level timing simulation are difficult to
apply to code running on these systems. This paper extends a
method for performance simulation of GPUs. The method uses
automated performance annotations in the application’s OpenCL
C source code, and an extended performance model for derivation
of a kernels runtime from metrics produced by the execution of
annotated kernels. The final results are then generated using
a probabilistic resource conflict model. The model reaches an
accuracy of 90% on most test cases and delivers a higher average
accuracy than previous methods.

I. INTRODUCTION

Modern embedded applications need to solve very complex
computations in a limited amount of time. This includes for
example advanced driver assistance systems like lane detection
and obstacle avoidance, augmented reality or multimedia ap-
plications. These ever increasing performance demands have
led to the introduction of a number of embedded systems
on a chip (SoC), which not only use powerful multicore
systems but also contain powerful GPUs that can be used as
hardware accelerators for compute intensive tasks. Examples
of such systems include the NVIDIA Tegra K1 [1] or systems
containing ARM MALI GPUs [2].

In the development phase of these systems, no hardware
implementation is available. Therefore developers often use
virtual prototypes for early validation of the timing behaviour,
hardware software codesign and design space exploration of
hardware/software systems. Much effort has been invested to
make these virtual prototypes for single and multiprocessor
systems faster, more accurate and easier to develop. The
emerging technology of heterogeneous systems including GPU
cores is mostly not considered by current academic and com-
mercial virtual platforms.

One performance simulation technique that has gained
interest in the recent years is source level timing simulation.
Source level timing simulation works by instrumenting each
basic block of an applications source code with function calls
to simulate the timing behaviour of the corresponding part
of the applications binary code on a specific target system.
Source level timing simulation is one of the fastest simulation
techniques that are currently available. This high simulation
speed is reached because the granularity of the performance

simulation is lifted from instruction level to basic block level.
And the annotated source code can be optimized more easily
for the architecture of the simulation host compared to binary
translation of the applications compiler generated binary code.

So far there is no performance simulation technique avail-
able that allows a simulation of systems containing GPU cores
at a comparable level of abstraction and with a comparable
simulation speed and accuracy. The main contributions of this
work are:

1) A detailed simulation model for resource conflicts
that better approximates the runtime of GPU accel-
erated tasks than previous work [3].

2) This work especially focuses on the timing effects of
limited access bandwidth to the register file.

3) An extended evaluation which shows the benefits and
limits of this simulation technique.

The remainder of this paper is structured as follows. Sec-
tion II describes the state of the art considering performance
modelling of GPUs. Section III gives a short introduction
to the microarchitecture of current GPUs and motivates our
performance modeling. Section IV and its subsections provide
a detailed overview of the methods used for performance
analysis and simulation and gives an in depth explanation
of our stochastic model for resource conflicts. In Section V
we give some insight in the implementation details of our
simulation method. Section VI gives a speed and accuracy
comparison of our method with a state of the art cycle accurate
performance simulator.

II. RELATED WORK

The only previous work that does source level performance
simulations for GPU cores is [3]. Our work builds on this
system but uses statistical modelling of resource contention
for some of the resources of the pipeline. This in many cases
improves the accuracy of the performance simulations. Other
current examples for source level performance simulation are
[4], [5], [6], [7], [8] and [9]. They mostly have been developed
for the simulation of single core systems. Some of them have
been used to simulate multicore systems with a limited number
of cores. None of them is directly applicable to simulate the
complex architectural features of current GPUs. And none of
them uses parallelism available on the simulation host to speed
up the simulations.

978-1-4673-7311-1/15/$31.00 ©2015 IEEE 1



Considering other techniques for performance simulation
and analysis of GPU cores there are some techniques avail-
able. The most widely used tool for performance simulations
of GPUs is gpgpu-sim [10] which uses a slow interpretive
simulator for functional simulation of GPUs coupled with a
detailed micro-architectural simulator. This leads to slow simu-
lations, which often make simulation of real world applications
infeasible. Other techniques for performance estimations of
GPU cores were presented in [11] and [12]. Both of them
extract performance relevant metrics like instruction counts,
instruction traces or accessed memory addresses during the
simulation of a program. These metrics are then analyzed by
a performance model to get an estimate on the execution time
of an application. Huang et. al. [13] use an interval analysis
on traces generated from a functional simulator to get an
analytical estimation for software execution time on GPUs.
Because these methods still rely on a functional simulation of
the application on an instruction set simulator their simulation
performance is still relatively low. The authors in [14] use a
cycle accurate simulator to get basic block execution times and
basic block execution traces. These traces are then combined
to calculate a measurement based worst case execution time.
This approach is very interesting as it allows an approximation
of the global worst case timing. However the use of multi-
ple instruction set simulations with varying input parameters
makes this approach infeasible on realistic problem sizes. In
[15] a purely analytical performance model is proposed, but
the experimental evaluation is very limited and many metrics
used to derive an execution time estimate are currently not
obtainable using source level simulations.

III. GPU-MICROARCHITECTURE AND EXECUTION
MODEL

Programming models for GPUs require a manual parti-
tioning of code that is executed on the traditional CPUs of
a system (the host) and code that is executed on the device.
A device may be the same CPU core as the host but can
also be a GPU or other accelerators. Code that is intended
to run on the host mostly stays in its current form, while
code that should run on a device is mostly rewritten in a
specialized programming language that allows a higher degree
of parallelism than traditional C/C++. The most common
languages for this purpose, CUDA C/C++ and OpenCL C,
are both based on ANSI C/C++. As OpenCL is available on
many platforms, and CUDA is quite closely locked to NVidia
GPUs, our framework is based on the OpenCL programming
environment. Functionality to be run on a device is formulated
as a number of massively data-parallel functions called kernels.
Each kernel consists of 10s to 1000s of threads or work items.
The exact number of threads in most cases depends on the
sizes of the input and output. All threads of a kernel form
the global work group. The programmer can choose subsets
of kernels which are called local work groups.

Current GPUs execute all threads of a kernel using several
layers of parallelism. The outermost layer consists of a number
of streaming multiprocessors. When there are multiple stream-
ing multiprocessors, this layer closely resembles traditional
multiprocessing. The threads scheduled to different multipro-
cessors need to belong to different local work groups. The
remaining levels of parallelism are handled within the pipeline
of one streaming multiprocessor. The levels of parallelism are
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Fig. 1: GPU-microarchitecture and our pipeline model

simultaneous multithreading and warp level parallelism. Warps
consist of the instructions of multiple threads from the same
local work group. While the warp size may vary depending
on the size of local work groups, the preferred and maximum
warp size on Nvidia GPUs has been 32 threads for several
generations. The threads of a warp always execute the same
instruction in lockstep but are allowed to branch independently.
As the instructions are allowed to branch independently, a
so called branch divergence can occur. Branch divergence is
handled in hardware by executing each path sequentially and
masking those operations which did not take the currently
selected path. As warps execute the instructions of several
threads in lockstep, we use the term warp instruction to mean
the instruction that is currently executed by all threads in the
warp. Each streaming multiprocessor handles multiple warps
concurrently using fine-grained multithreading. All warps of
a local work group need to run on the same streaming
multiprocessor, but depending on the resource usage of a local
work group, multiple local work groups might be handled by
the same streaming multiprocessor concurrently.

Warp instructions are handled by a pipeline structured as
the one in Figure 1. The frontend fetches two instructions of
one warp at a time and places the decoded instructions in an
instruction buffer. If more than 2 warps have ready instructions,
instructions are scheduled in a round robin manner. The issue
stage of the pipeline issues instructions to the operand collector
stage of the pipeline. This stage reads the input operands from
a banked register file. The warp instructions are executed on
different functional units, depending on the instruction type. In
our model there are two functional units to handle arithmetic
and logic instructions (ALU), one special functional unit (SFU)
to handle specialized instructions like trigonometric operations
and one memory unit to handle load store instructions. After
execution, the results are written back to the register file and
instructions waiting for the results are notified through the
scoreboard.

In this work we especially focus on modelling the perfor-
mance impact of accesses to the register file in the operand
collector and writeback stage of the pipeline. For access to the
register file GPUs use a operand collector structure described
in [16]. This part of the pipeline is shown in more detail in
Figure 2.

Upon issue Instructions are first stored in operand collector
units. In the following cycle instructions begin to copy their
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Architectures

operands from a banked register file to the collector units.
Instructions read at most one operand per cycle, meaning the
collector units are occupied by the instruction for at least 1
cycle + number of operands. An arbitrator ensures that each
register bank can only be accessed by one collector unit at a
time. After all operands of an instruction have been read the
instruction is dispatched to the execution units of the pipeline.
After execution the results are written back to the register
file. Writebacks can conflict with other writebacks as well as
with reads from the Operand Collectors. If conflicts occur the
arbitrator schedules the conflicting accesses in a fair round-
robin order.

IV. SOURCE-LEVEL PERFORMANCE SIMULATION FOR
GPUS

Source level performance simulation of GPU cores allows
performance estimation for GPU kernels without the need
of a slow functional simulation of the GPUs instruction set
architecture. The structure of our simulation framework is
shown in Figure 3. The source code is first translated by
an OpenCL compiler to PTX assembly code for an NVidia
GPU architecture. As the PTX assembly needs to contain
debugging information for the following matching steps to
work, we cannot use the official Compiler from NVidia but use
a compiler toolchain based on clang and LLVM [17]. We then
construct a control flow graph from the source code as well as
from the assembly code. Both control flow graphs are used to
match the corresponding basic blocks on the source and binary
level. A detailed description of the matching step is out of
scope for this paper. The algorithm used for matching is similar
to the one in [6]. The CFG on the binary level is also used to do
a low-level optimistic pipeline analysis. This analysis extracts
latencies for the execution of each binary level basic block.
The results of the binary to source matching and the low-level
pipeline analysis are used to create a version of the original
source code with timing and resource usage annotations. These
annotations enable a fast “simulation” of the pipeline behavior
through execution on any OpenCL compatible device. Through
the execution on any OpenCL device performance simulations
can be carried out without availability of a specific GPU,
provided that a performance model for the simulated GPU
is available. The timing behavior simulated by the native
execution on a device is not considering effects of resource
sharing due to the simultaneous multithreading on a GPU

PTX assembly 

__kernel void syrk_kernel( 
    __global float *a, __global float *c,  
    float  alpha, float beta, int m, int n) { 
  int j = get_global_id(0); 
  int i = get_global_id(1);  
  if ((i < n) && (j < n)) { 
      c[i * n + j] *= beta;  
      for(int k=0; k< m; k++) { 
         c[i * n + j] += alpha *  
 a[i * m + k] *  
 a[j * m + k]; 
}}} 

OpenCL source code 

1. OpenCL compiler 

.visible .entry syrk_kernel 
…. 
@!%p3 bra  BB0_4; 
bra.uni  BB0_1; 
BB0_1: 
… 
add.s64  %rl13, %rl8, %rl12; 
BB0_3: 
… 
setp.ne.s32 %p5, %r16, 0; 
@%p5 bra  BB0_3; 
BB0_4: 
ret; 

2. assembly to 
 source matching 

3. optimistic timing and 
 resource usage analysis 

BB_0 
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12 cycles 
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BB_0 
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matched binary and source level control flow graphs  

__kernel void syrk_kernel( 
    __global float *a, __global float *c,  
    float  alpha, float beta, int m, int n) { 
  int j = get_global_id(0); 
  int i = get_global_id(1); 
  bb0();  
  if ((i < n) && (j < n)) { 
      bb1(); 
      c[i * n + j] *= beta;  
      for(int k=0; k< m; k++) { 
         bb3(); 
         c[i * n + j] += alpha *  
 a[i * m + k] *  
 a[j * m + k]; 
bb4();}}} 

4. timing and resource 
usage instrumentation 

 
Void bb3(){ 
If(last_block == 1) { 
     cycles[tid] += 20: 
     res[tid][0] += 8: 
     res[tid][1] += 4;  
  } 
  … 
  last_block = 3; 
} 

5. Execution on any 
OpenCL device 

Thread 1 

Cycles: 1003 

Res[1]:  400 

Res[2]: 510 

Thread 2 

Cycles: 1003 

Res[1]:  400 

Res[2]: 510 

Thread[n-1] 

Cycles: 1003 

Res[1]:  400 

Res[2]: 510 

Thread 4[n] 

Cycles: 52 

Res[1]: 10 

Res[2]: 15 

… 

6. Analytical Timing Model 

 1432 cycles 
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Total Execution Time 

Instrumented OpenCL source code 

7. Probabilistic Resource 
Model 

estimated total  
execution time 

estimated  total 
resource usages 
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Fig. 3: Structure of the proposed simulation framework

core. These effects are incorporated into our model by the step
called Analytical Timing Model in Figure 3. In Section IV-A
we describe the performance model to simulate the timing
behaviour of GPU-Architectures. It does not use probability
theory to approximate the execution time of applications and
instead approximates a lower bound for the execution time
by taking best case assumptions. The results of the Analytical
Timing Model are then used to approximate the number of
conflicts for some resources with a Probabilistic Resource
Model. This model refines the resource usage information from
the analytical model by taking conflicting accesses to shared
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Fig. 4: Example of our pipeline analysis

resources into account. The refined resource usages are then
used to reiterate the analytical model until resource usages
no longer change. The estimated execution time of the last
iteration is the final estimate of the execution time.

A. The Optimistic Analytical Performance Model

During the static analysis phase of the framework we build
pipeline execution graphs for each basic block in the system.
The timing is then determined by searching for the longest path
in the pipeline execution graph. Additional to the determination
of the execution time of basic blocks we analyze the resource
usage time of each basic block. The resource usage time is the
time one resource of the pipeline is occupied by an instruction
and cannot be used by an other instruction. In Figure 4 we
show the pipeline execution graphs and the analyzed resource
usages. The static execution time as well as the analyzed static
resource usages for each basic block are annotated back to the
original source code. Execution of the annotated source code
on any OpenCL capable compute device gives the accumulated
resource usages. The accumulated per thread resource usages
are then reduced to the accumulated resource usages of the
whole kernel.

Usage time IF

Usage time IS

Usage time OC

Usage Time ALU

Usage Time MEM

Usage Time WB

Optimistic Kernel Execution Time

max

Estimated Execution Time

Fig. 5: Illustration of the optimistic analytical model

In Figure 5 we illustrate the result of the reduction step
of the analytical model. In the optimistic Analytical model
we assume perfect scheduling for all resources. That means
conflicting accesses to resources only happen if the resource is

fully saturated. In this case the estimate for the final execution
time is solely the maximum over the optimistic total execution
time and the resource usages. For details of the analytical
model we refer to [3].

B. Probabilistic Extension of the Analytical Timing Model

Initial experiments with the cycle accurate GPU simulator
gpgpu-sim showed that the number of banks in the register
file and the number of collector units influence the execution
time of GPU-Kernels. But there is no direct way of deter-
mining the number of bank conflicts from the metrics used
by the optimistic execution model. We therefore choose to
model the performance impact of the register accesses using a
probabilistic model.

Let Xi be a family of random variables that give the bank
number for each memory access i. We assume that register
bank accesses are uniformly and independently distributed
among the memory banks. This assumption does not hold if we
consider only a single warp. Register accesses from a single
warp instruction do never conflict with each other.

But since the actual bank numbers used for a register name
are determined by a hash function from the register name and
the warp id at runtime and the pipeline is used by multiple
warps concurrently, uniform and independent distribution can
be used at least as a rough approximation of the actual distribu-
tion. Under these assumptions the register bank conflict model
should be more accurate if there are more warps concurrently
on the pipeline.

If there are b register banks in the system this leads us to
the probability of an access to bank k of:

P [Xi = k] =
1
b

If we have m simultaneous accesses the probability that
exactly n accesses go to bank k is:

P [Yk = n] =
(

m

n

)(
1
b

)m(
1− 1

b

)m−n
The expected number of simultaneous accesses is then by

definition of the expected value:

E[Yk] =
m∑
i>0

i · P [Yk = i]

The number of conflicts is one less than the number of
accesses to the register bank. So the estimated number of
conflicts per bank is:

nconflictsk
= E[Yk]− 1

The total number of conflicts for all register banks in the
system is then the sum over all banks in the system.

nconflicts =
b∑

k=0

nconflictsk
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And as the expected number of conflicts is the same for
all banks in the system this can be simplified to:

nconflicts = b · nconflicts0

If this model should be applied to the GPU pipeline there
are still two important points missing. First the number of
simultaneous accesses m is not known. The second missing
point is the execution time estimation from per clock register
bank conflicts. Our solution for this problem is the following.
We first determine the number of read and written registers
per basic block during static analysis. This information is then
annotated back in the original source code in addition to the
metrics described in section IV-A. Execution of the annotated
source code, accumulates the total number of register read and
write accesses. The calculation of the total number of register
read and write accesses is implemented as the resource usage
calculation. Registers are always shared between all threads in
a warp. This means the total number of read or written registers
of a warp is approximately the maximum number of read or
written registers of all threads in the warp. Instructions from
different warps do never share registers. Therefore the total
register usage is the sum over the register usages of all warps.

Usage time IF

Usage time IS

Usage time OC Overhead Reads

Usage Time ALU

Usage Time MEM

Usage Time WB Overhead Writes

Optimistic Kernel Execution Time

max

Estimated Execution Time

Register
Reads

Register
Writes

Average Register Accesses

Estimated Bank Conflicts

Fig. 6: Illustration of the new resource conflict model

The final steps of the model are shown in Figure 6. As a
first step the optimistic execution time is calculated. We then
use this time to approximate the average number of accesses
to the register file by dividing the total number of accesses
through the number kernel execution times and rounding the
result down to the next integer. This result and the number
of register banks is then used together with the probabilistic
model to estimate the average number of register bank conflicts
per cycle. An estimate of the total number of conflicts is then
calculated using the number of conflicts per cycle and the
optimistic estimate of the number of cycles. Multiplying this
result with the number of register reads gives us the additional

usage time of the operand collectors. The additional usage of
the writeback stage of the pipeline is calculated by multiplying
it with the number of register writes. We then update the usage
information of the Operand Collectors and the writeback stage
and calculate the new estimate of the execution time using the
updated usage information. The algorithm is then repeated with
the new execution time until a fix point is reached or up to a
user defined maximum number of iterations.

V. IMPLEMENTATION DETAILS

The performance simulation framework has been
implemented as a shared library implementing the part of the
OpenCL runtime API that is responsible for compiling and
running OpenCL code on a GPU. The idea of implementing
the simulation framework this way has been taken from
gpgpu-sim. It allows to seamlessly replace our simulator
with gpgpu-sim or the host OpenCL implementation just by
changing the value of the Linux LD_PRELOAD environment
variable. The functions implemented in this library are
clCreateProgramWithSource, clBuildProgram
and clEnqueueNDRangeKernel.

clCreateProgramWithSource just stores the
OpenCL source code it receives as a parameter for further
analysis and annotation purposes on the hard disc of the
simulation host.

clBuildProgram first calls an OpenCL C compiler for
the target architecture to get binary code for the target GPU.
It then calls our annotation and static analysis framework with
the original version of the source code and the target binary to
produce an instrumented version of the source code. The im-
plementation then uses clCreateProgramWithSource
and clBuildProgram of the simulation host to produce an
executable version of the instrumented kernel.

Our version of clEnqueueNDRangeKernel first allo-
cates buffers for the additional performance metrics. It then
starts the instrumented kernel with its original parameters and
the additional performance metrics. After the execution of the
instrumented Kernel, the result buffers are transferred to the
simulation host and evaluated using the analytical performance
models. Finally the memory for the performance metrics is
freed and the execution of the program is resumed.

VI. RESULTS

The described extensions have been integrated in the model
of [3]. For the Evaluation of our performance model we used
benchmarks from then suites Rodina [18] and polybench-gpu
[19]. The benchmarks from polybench-gpu are naive imple-
mentations of simple mathematical kernels mostly functions
from the BLAS linear algebra library. The applications from
Rodinia on the other hand have a much higher complexity.
These benchmarks use full applications with kernels optimized
for high execution speed on GPU devices. Table I gives a
short description of the benchmarks used for evaluation. We
additionally list the classification of the benchmark in one
of the 13 Berkley dwarfs [20]. All benchmarks have been
compiled to ptx-Assembly using clang and llvm [17]. With the
compiler flags -O3 -g to enable most compiler optimizations
and to generate debug information for the binary to source
matching algorithm.
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TABLE I: Benchmarks used for evaluation of the simulator

Benchmark Description Dwarf Suite

backprop Training of a multilayer perceptron Unstructured Grid rodinia
bfs Parallelized breadth first search in a Graph Graph Traversal rodinia
bplustree Parallelized lookup in a B+-Tree Graph Traversal rodinia
gaussian Gaussian elimination on a 4x4-Matrix Dense Linear Algebra rodinia
kmeans K-Means clustering of a large dataset Dense Linear Algebra rodinia
lud LU decomposition Dense Linear Algebra rodinia
nn Search of nearest neighbour in a database with hurricane data Dense Linear Algebra rodinia
nw Needlman Wunsch algorithm for optimization of DNA sequence alignment Dynamic Programming rodinia
particle Object tracking using a particle filter Dense Linear Algebra rodinia
streamcluster Clustering of a large Dataset Dense Linear Algebra rodinia
2DConv 2DConvolution using a 3x3 kernel Structured Grid polybench-gpu
2MM Multiplication of 2 Matrices Dense Linear Algebra polybench-gpu
3DConv 3Dconvolution using a 3x3x3 Kernel Structured Grid polybench-gpu
3MM Multiplication of 3 Matrices Dense Linear Algebra polybench-gpu
FDTD2D Solving of two dimensional differential equations using finite-difference time-domain method Dense Linear Algebra polybench-gpu
GEMM Generalized matrix multiplication C ← αAB + βC Dense Linear Algebra polybench-gpu

The reference for the simulations is the cycle accurate
simulator gpgpu-sim configured to simulate a single core
of a NVIDIA Fermi architecture GPU. Since our simulator
currently does not contain a memory model we activated
the perfect memory mode of the gpgpu-sim. In this mode
memory accesses are always simulated as hits in the first level
cache.

We first evaluate the accuracy of the estimated number
of operand collector conflicts. For this purpose we compare
the estimated number of register bank conflicts with the
actual number of operand collector conflicts as simulated by
gpgpusim. As the original version of gpu-sim does not report
the number of operand collector conflicts we made a slight
modification to the simulator’s source code to include this
number in its output. The comparison of the simulated number
memory conflicst according to gpgpu-sim with the number
of conflicts given by the performance estimator included in
our estimation framework. The results of this comparison are
shown in table II. The table also shows the total number of
warps in each kernel and the number of warps that are executed
in parallel.

The experimental data confirms the assumption from Sec-
tion IV-B. If there is only one or a few warps executed on
the pipeline in parallel, the model severely overestimates the
number of memory bank conflicts. On the other hand in all
of these cases the absolute number of register bank conflicts
is relatively small and the number of register bank conflicts
does not influence the number of estimated cycles for all
benchmarks where this overestimation happens. For the other
benchmarks the number of register bank conflicts is approx-
imated comparatively well. The mean of the relative errors
for benchmarks where there is an influence of the estimated
cycles is 1.3 this still indicates a slight overstimation of the
register bank conflicts by our model, but the actual number
of register bank conflicts is still aproximated quite well. This
small average overestimation of register bank conflicts can
partially be explained by the interaction with the optimistic
performance estimation model. If the final execution time is
still below the execution time on the reference hardware, the
number of register bank conflicts will be overestimated.

In Figure 7 we show the accuracy results considering the
simulated instructions. As GPUs support predicated execution
the blue bar shows the portion of instructions that actually

TABLE II: Accuracy evaluation of the probabilistic register
bank conflict estimation

Name Warps Parallel
Warps

Estimated
Conflicts
Our model

Simulated
Conflicts
gpgpusim

Relation

backprop0 32768 48 556794 301251 1.8483
backprop1 32768 48 282836 221409 1.2774
bfs0 31256 48 83203 53033 1.5689
bfs1 31256 48 48776 21489 2.2698
bplustree0 48000 48 513902 500644 1.0265
bplustree1 80000 48 538226 323143 1.6656
gaussian0 1 1 85 0 nan
gaussian1 8 8 135 25 5.4000
kmeans0 494020 8 49833766 15642545 3.1858
kmeans1 494020 8 366446960 288321549 1.2710
lud0 1 1 10901 361 30.1967
lud1 63 8 59075 31149 1.8965
lud2 31752 8 1267467 856854 1.47921
nn0 1338 48 6733 6873 0.9796
nw0 1 1 2680 40 67.0000
nw1 2 2 2680 115 23.3043
streamcluster0 2048 48 2632 2061 1.2770
streamcluster1 98304 48 126336 95159 1.3276
2MM0 32 32 2059 1883 1.0935
3DConv0 32 32 590 790 0.7468
3MM0 8192 48 7597734 6991199 1.0868
GEMM0 8192 48 11358303 10911143 1.0410

gets executed. The red part of the bar shows the portion of
instructions that are fetched but not executed based on the
predicate registers of the GPU according to our performance
simulator. The reference is the sum of executed and simulated
instructions according to gpgpusim. The results diverge by
less than 10% for all kernels except for the second kernel
of the benchmark lud. A closer examination of the results
reveals that the number of executed instructions is 98% percent
accurate. This shows that the source to binary matching
for this kernel is as accurate as for the other kernels. The
overhead of almost 50% is attributed almost completely to our
simplified handling of divergent branches. This problem can
be handled by a simulation approach taking divergent branches
into account, but this is out of the scope of this paper.

In Figure 8 we show an accuracy comparison of the
purely optimistic baseline model and the probabilistic model
described in this paper. The optimistic baseline is shown in
blue while the improvements of the probalistic extension are
shown in red. As expected the purely optimistic model always
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produces lower or the same execution times as the probabilistic
extension. The accuracy is improved for all but one bench-
marks for which the probabilistic model shows an effect. The
one exception, where the probabilistic Model reduces accuracy
is 2DConv0. In this case the accuracy changes from 0.98
to 1.06 which is a reduction of the simulation accuracy by
4%. The average simulation accuracy is 94%. All but one of
the benchmarks with nearly 100% accuracy in the instruction
count comparison show a cycle count accuracy between 90%
and 110%. The results are still optimistic, as accesses to other
resources are still assumed to be scheduled perfectly and the
impact of different scheduling policies is not considered.

The speedups compared to a cycle accurate simulation
using gpgpu-sim range between 331 for the kernel 3DConv0
and 37348 for the kernel kmeans1. Which is in the same order
of magnitude as in [3] which means the simulation speed has

not been slowed down significantly by the additional model.
For the speed comparison both simulators run on an Intel(R)
Core(TM) i7-4770K CPU.

VII. CONCLUSION AND FUTURE WORK

In this paper we have presented a method to increase
the accuracy of source level simulations for GPU-cores with
a probabilistic model of conflicting accesses to the banked
register file. The experimental results show that the method
improves the accuracy by reducing the time difference com-
pared to a cycle accurate simulator below 10% for most tested
Benchmarks. We assume that a similar approach can be used
to model the timing of many modern computer architectures.

In our future work we will address the remaining prob-
lems of this simulation approach by integrating simulation
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methodologies for the simulation of diverging branches and
the memory subsystem. Our next step will be the integration
of a performance model for the memory subsystem. We think
that similar methods than the ones presented in this paper can
be used to model the timing behaviour of banked resources in
the memory subsystem e.g. the L2-cache, the local memory
and the global DRAM, while the simulation of caches needs
the integration of a Cache simulator. The integration of a
memory model will also allow us to compare our model with
measurements taken on a real GPU. We would also like to
integrate the simulator in a highlevel virtual platform solution
like [7] to enable full system simulations of embedded systems
containing GPUs.
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