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Abstract—In this work we present the first design and imple-
mentation of a wait-free hash map. Our multiprocessor data
structure allows a large number of threads to concurrently
put, get, and remove information. Wait-freedom means that
all threads make progress in a finite amount of time — an
attribute that can be critical in real-time environments. This is
opposed to the traditional blocking implementations of shared
data structures which suffer from the negative impact of deadlock
and related correctness and performance issues. Our design is
portable because we only use atomic operations that are provided
by the hardware; therefore, our hash map can be utilized by
a variety of data-intensive applications including those within
the domains of embedded systems and supercomputers. The
challenges of providing this guarantee make the design and
implementation of wait-free objects difficult. As such, there are
few wait-free data structures described in the literature; in
particular, there are no wait-free hash maps. It often becomes
necessary to sacrifice performance in order to achieve wait-
freedom. However, our experimental evaluation shows that our
hash map design is, on average, 5 times faster than a traditional
blocking design. Our solution outperforms the best available
alternative non-blocking designs in a large majority of cases,
typically by a factor of 8 or higher.

I. INTRODUCTION

Our design is motivated by the need for applications
and algorithms to change and adapt as modern architectures
evolve. These adaptations have become increasingly difficult
for developers as they are required to effectively manage an
ever-growing variety of resources such as a high degree of
parallelism, single-chip multi-processors, and the deep hierar-
chies of shared and distributed memories. Developers writing
concurrent code face challenges not known in sequential
programming, most importantly, the correct manipulation of
shared data. The new C++ standard, C++11, includes a large
number of concurrency features, such as atomic operations.
However, C++11 still does not offer a standard collection of
parallel multiprocessor data structures. The standard collection
of data structures and algorithms in C++11 is the inherently
sequential Standard Template Library (STL).

Currently, the most common synchronization technique is
the use of mutual exclusion locks. Blocking synchronization
can seriously affect the performance of an application by
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diminishing its parallelism [13]. The behavior of mutual exclu-
sion locks can sometimes be optimized by using a fine-grained
locking scheme [15], [26] or context-switching. However, the
interdependence of processes implied by the use of locks, even
efficient locks, introduces the dangers of deadlock, livelock,
starvation, and priority inversion — our design avoids these
drawbacks.

A. Our Approach

The main goal of our design is to deliver a hash map that
provides both safety and high performance for multi-processor
applications.

The hardest problem encountered while developing a par-
allel hash map is how to perform a global resize, the process
of redistributing the elements in a hash map that occurs when
adding new buckets. The negative impact of blocking syn-
chronization is multiplied during a global resize, because all
threads will be forced to wait on the thread that is performing
the involved process of resizing the hash map and redistribut-
ing the elements. Our wait-free implementation avoids global
resizes through new array allocation. By allowing concurrent
expansion this structure is free from the overhead of an explicit
resize, which facilitates concurrent operations.

The presented design includes dynamic hashing, the use of
sub-arrays within the hash map data structure [19]; which, in
combination with perfect hashing, means that each element
has a unique final, as well as current, position. It is important
to note that the perfect hash function required by our hash map
is trivial to realize as any hash function that permutes the bits
of the key is suitable. This is possible because of our approach
to the hash function; we require that it produces hash values
that are equal in size to that of the key. We know that if we
expand the hash map a fixed number of times there can be no
collision as duplicate keys are not provided for in the standard
semantics of a hash map. The aforementioned properties are
used to achieve the following design goals:
(a) Wait-free: a progress guarantee, provided by our data

structure, that requires all threads to complete their op-
erations in a finite number of steps [13].

(b) Linearizable: a correctness property that requires seem-
ingly instantaneous execution of every method call; the
point in time that this appears to occur is called a lin-
earization point, which implies that the real-time ordering
of calls are retained [13].
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(c) Portable: we only rely on atomic operations available on
most modern architectures, such as atomic read, atomic
write, and Compare-And-Swap (CAS) [13]; all of these
operations are standard in C++11 [16]. This ensures that
our implementation can be used on a wide range of multi-
processor architectures.

(d) High performance: our wait-free hash map design out-
performs, by a factor of 8 or more, state of the art non-
blocking designs. Our design performs a factor of 5 or
greater faster than a standard blocking approach.

(e) Safety: our design goals help us achieve a high degree
of safety; our design avoids the hazards of lock-based
designs.

The rest of this work is organized as follows: Section II
briefly introduces the fundamental concepts of non-blocking
synchronization, Section III discusses related work, Section IV
presents the algorithms of our wait-free hash map design, Sec-
tion V presents an informal proof of correctness, Section VI
offers a discussion of our performance evaluation, Section VII
provides an overview of the practical impact of our work, and
Section VIII offers conclusions and a discussion of our future
work.

II. BACKGROUND

A hash map is a data container that uses a hash function
to map a set of identifying values, known as keys, to their
associated values [4]. The standard interface of a hash map
consists of three main operations: put, get, and remove; each
operation has an average time complexity of O(1).

Standard hash maps used in software development are
designed to work in sequential environments, where only one
process can modify the data at any moment in time. In a
concurrent environment, there is no guarantee that the hash
map will be in a consistent state when more than one process
attempts to modify it; one potential problem is that a newer
value may be replaced by an older value. The solution to these
issues was the development of lock-based hash maps [1].

Each process that wished to modify the hash map would
have to lock the entire hash map. If the hash map was
already locked, then all other processes needed to wait until
the holder of the lock released it. This led to performance
bottlenecks as more parallel processes were added to the
system, because these processes would have to wait on the
others [27]. Eventually, fine-grained locking schemes were
also proposed, but even these approaches suffered from the
negative consequences of blocking synchronization [15].

As defined by Herlihy et al. [13] [14], a concurrent object is
lock-free if it guarantees that some process in the system makes
progress in a finite number of steps. An object that guarantees
that each process makes progress in a finite number of steps
is defined as wait-free [13]. By applying atomic primitives
such as CAS, non-blocking algorithms, including those that
are lock-free and wait-free, implement a number of techniques
such as optimistic speculation and thread collaboration to
provide for their strict progress guarantees. As a result of these

requirements, the practical implementation of non-blocking
containers is known to be difficult.

III. RELATED WORK

Research into the design of non-blocking data structures
includes: linked-lists [10], [22]; queues [23], [31], [25];
stacks [11], [25]; hash maps [22], [25], [9]; hash tables [29];
binary search trees [8], and vectors [6].

There are no pre-existing wait-free hash maps in the litera-
ture; as such, the related work that we discuss consists entirely
of lock-free designs. In [22], Michael presents a lock-free hash
map that uses linked-lists to resolve collisions; this design
differs from ours in that it does not guarantee constant-time for
operations after a resize is performed [29] [22]. In [9], Gao et
al. present an openly-addressed hash map that is almost wait-
free; it degrades in performance to lock-free during a resize.

In [29], Shalev and Shavit present a linked-list structure
that uses pointers as shortcuts to logical buckets that allow the
structure to function as a hash table. In contrast to our design,
the work by Shalev and Shavit does not present a hash map
and it is lock-free. There was a single claim of a wait-free
hash map that appeared as a presentation by Cliff Click [3];
the author now claims lock-freedom. Moreover, the work by
Click was not published, so we will not compare to it.

IV. ALGORITHMS

In this section we define a semantic model of the hash map’s
operations, address concerns related to memory management,
and provide a description of the design and the applied
implementation techniques. The presented algorithms have
been implemented, in both ISO C and ISO C++, and designed
for execution on an ordinary, multi-threaded, shared-memory
system; we require only that it supports atomic single-word
read, write, and CAS instructions.

A. Structure and Definition

Our hash map is a multi-level array which has a structure
similar to a tree; this is shown in Fig. 1. Our multi-level array
differs from a tree in that each position on the tree could hold
an array of nodes or a single node. A position that holds a
single node is a dataNode which holds the hash value of a
key and the value that is associated with that key; it is a simple
struct holding two variables. A dataNode in our multi-level
array could be marked. A markedDataNode refers to a pointer
to a dataNode that has been bitmarked at the least significant
bit (LSB) of the pointer to the node. This signifies that this
dataNode is contended. An expansion must occur at this node;
any thread that sees this markedDataNode will try to replace it
with an arrayNode; which is a position that holds an array of
nodes. The pointer to an arrayNode is differentiated from that
of a pointer to a dataNode by a bitmark on the second-least
significant bit.

Our multi-level array is similar to a tree in that we keep a
pointer to the root, which is a memory array that we call head.
The length of the head memory array is unique, whereas every
other arrayNode has a uniform length; a normal arrayNode
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has a fixed power-of-two length equal to the binary logarithm
of a variable called arrayLength. The maximum depth of the
tree, maxDepth, is the maximum number of pointers that must
be followed to reach any node. We define currentDepth as
the number of memory arrays that we need to traverse to reach
the arrayNode on which we need to operate; this is initially
one, because of head.

Our approach to the structure of the hash map uses an
extensible hashing scheme; we treat the hash value as a bit
string and rehash incrementally [7]. We use arrayLength
to determine how many bits are necessary to ascertain the
location at which a dataNode should be placed within the
arrayNode. The hashed key is expressed as a continuous list
of arrayNodePow-bit sequences, where arrayNodePow is the
binary logarithm of the arrayLength; e.g. A− B−C−D,
where A is the first arrayNodePow-bit sequence, B is the
next arrayNodePow-bit sequence, and so on; these represent
positions on different arrayNodes. These bit sequences are
isolated using logical shifts. We use R to designate the number
of bits to shift right, in order to isolate the position in the
arrayNode that is of interest. R is equal to log2 arrayLength∗
currentDepth. For example, in a memory array of length
64 = 26, we would take R= 6 bits for each successive
arrayNode.

The total number of arrays is bounded by the number of
bits in the key divided by the number of bits needed to
represent the length of each array. For example, with a 32-
bit key and an arrayLength of 64, we have a maxDepth of
6, because d32/ log2 64e= 6. This places no limit on the total
number of elements that can be stored in the data structure;
the hash map expands to hold all unique keys that can be
represented by the number of bits in the key (even beyond the
machine’s word size). We have tested with multiword keys,
such as the 20 bytes needed for SHA1. Neither an arrayNode
nor a markedDataNode can be present in an arrayNode
whose currentDepth is equal to maxDepth, because no hash
collisions can occur there.

Fig. 1: An illustration of the structure of the hash map.

B. Traversal

Traversing the hash map is done by performing a right
logical shift on the hashed key to preserve R bits, and ex-
amining the pointer at that position on the current memory
array. If the pointer stores the address of an arrayNode, then

the currentDepth increases by one, and that position on the
new memory array is examined.

Fig. 2: An example of data stored in the hash map (values not
shown).

We discuss the traversal of the hash map using Figure 2 as
an illustration of this process. In our example, the arrayNodes
have a length of four, which means that exactly two bits are
needed to determine where to store our dataNode on any
particular arrayNode, except the main arrayNode which has
a larger size than every other arrayNode (see Section IV-A).
The hashed key is expressed as a finite list of two-bit sequences
e.g. A−B−C, where C is the first three-bit sequence, and so
on; these sequences represent positions at various depths.

For example, if we need to find the key 0-4-2, in the hash
map shown in Figure 2, then we first need to hash the key. We
assume that this operation yields 2-3-1. To find 2-3-1 we first
take the right-most set of bits, and go to that position on the
main memory array. We see that this is an arrayNode, so we
take the next set of bits which leads us to examine position
3 on this arrayNode. This position is also an arrayNode,
so we take the next set of bits which equal 2, and examine
that position on this arrayNode. That position is a dataNode,
so we compare its hashed key to the hashed key that we are
searching for. The comparison reveals that the hash values are
both equal to 2-3-1, so we return the value associated with
this dataNode.

C. Main Functions

In this section we provide a brief overview of the main oper-
ations implemented by our hash map. Unless otherwise noted,
all line numbers refer to the current algorithm being discussed.
In all algorithms, local is the name of the arrayNode that
an operation is working on and pos is the position on local
that is of interest. The variable failCount is a thread-local
counter that is incremented whenever a CAS fails and the
thread must retry its attempt to update the hash map. Instances
of this variable are compared to the maxFailCount which is a
user-defined constant used to bound the maximum number of
times that a thread retries an operation after a CAS operation
fails. If this bound is reached, then an expansion is forced at
the position that the failing operation is attempting to modify.
The default value is ten, though in practice we have not seen
a value higher than three. This constant should be set equal
to the number of threads, or higher. If maxFailCount is set
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lower, performance may be affected because the hash map
may be unnecessarily expanded.

If these functions are implemented in a system that does not
have a sequentially consistent memory model, then memory
fences are needed to preserve the relative order of critical
memory accesses [22].

1) Algorithm 1 - put (key, value): The put function is
used to insert a key-value pair into the hash map if the key is
not already in the hash map and to update the key’s value if
the key is already in the hash map. A put operation traverses
the hash map as described in Section IV-B, until it finds a
position that is null, or contains a dataNode with the same
key. At this point it performs a CAS, to put the node in the
hash map, either at line 19 or line 36, depending on whether
null or a dataNode was initially read; these are two of the
four linearization points of the put function.

If the CAS fails, then we perform a read of the new value
(line 22 or 40 respectively), because the value at that position
must have changed in order for our CAS to fail. If this read
reveals that the new node has the same key as the one that
the put operation is trying to insert, then we can reason
that this put operation completed, and was then immediately
overwritten; this means that the reads in lines 22 and 40 are
the remaining two linearization points for the put function.

However, if the read (line 22 or 40) revealed an arrayNode,
then the operation would continue its traversal as normal. If
the read revealed a markedDataNode, then the thread would
have to add an arrayNode before continuing its traversal. If
the operation repeatedly fails the CAS (line 19 or 36) without
being able to discover that its operation has been completed
and immediately overwritten, then the thread’s failCount
is increased. If this continues until the failCount equals
maxFailCount, then that means that the position that this
thread wanted to insert into is highly contended, so new
arrayNodes are added until the thread can insert without
interference from another thread.

In the worst case, this requires that new arrayNodes are
added until maxDepth is reached, at which point it is not
possible for there to be any contention caused by a thread
that does not involve the same key, because only duplicate
keys could hash to the same position at maxDepth, due to our
use of a perfect hash function. Therefore, at this point, the
thread will be able to finish its operation with a single CAS,
whether it succeeds or fails, as described above.

2) Algorithm 2 - get (key): The get operation searches
the hash map for a key. If it finds the key (line 10), then it
returns the associated value; otherwise, it returns null.

3) Algorithm 3 - remove (key): The remove operation
traverses the hash map until a dataNode, markedDataNode,
or null is found. If anything is found, other than a dataNode,
or a markedDataNode with a matching key, then the operation
returns false, because the key was not found in the hash map;
the linearization point is the read where we discovered this
(line 6). If a dataNode is found, then a CAS is performed to
remove it. If the CAS is successful, then the operation returns
true, and the linearization point is line 13.

Algorithm 1 put key,value
1: hash=hashKey(key);
2: insertThis=allocateNode(value,hash);
3: local=head;
4: for int R=0; R< keySize;R+=arrayNodePow do
5: pos=hash&(arrayLength-1);
6: hash=hash >> arrayNodePow;
7: failCount=0;
8: while true do
9: if failCount > maxFailCount then

10: markDataNode(local,pos);
11: node=getNode(local,pos);
12: if isArrayNode(node) then
13: local=node;
14: break;
15: else if isMarked(node) then
16: local=expandTable(local,pos,node,R);
17: break;
18: else if node==null then
19: if CAS(local[pos],null, insertThis) then
20: return true;
21: else
22: node=getNode(local,pos);
23: if isArrayNode(node) then
24: local=node;
25: break;
26: else if isMarked(node) then
27: local=expandTable(local,pos,node,R);
28: break;
29: else if node-> hash == insertThis-> hash then
30: free(insertThis);
31: return true;
32: else
33: failCount++;
34: else
35: if node-> hash == insertThis-> hash then
36: if CAS(local[pos],node,insertThis) then
37: free(node);
38: return true;
39: else
40: node2=getNode(local,pos);
41: if isArrayNode(node2) then
42: local=node2;
43: break;
44: else if isMarked(node2)∧unmark(node2)==node then
45: local=expandTable(local,pos,node,R);
46: break;
47: else
48: free(insertThis);
49: return true;
50: else
51: local=expandTable(local,pos,node,R);
52: if !isArrayNode(local) then
53: failCount++;
54: else
55: break;

Algorithm 2 get key
1: hash=hashKey(key);
2: local=head;
3: for int right=0; right< keySize;right+=arrayNodePow do
4: pos=hash&(arrayLength-1);
5: hash=hash >> arrayNodePow;
6: node= unmark(getNode(local,pos));
7: if isArrayNode(node) then
8: local=node;
9: else

10: if node-> hash == hash then
11: return node-> value;
12: else
13: return null;
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If the CAS fails, then the position is read again, because
the contents of that position must have changed since the last
read. If this read reveals an arrayNode, then the appropriate
position on the arrayNode is examined. If the position holds a
markedDataNode, then the new arrayNode is created and ex-
amined. However, if the contents of that position are anything
else, then we return true.

If the position is null, then that means a concurrent remove
operation has already removed this key. If the position is
a dataNode, or a markedDataNode, then this indicates that
our remove operation was executed concurrently with a put
operation that took effect immediately after our remove, and
the read at line 18 is the linearization point.

Algorithm 3 remove key
1: hash=hashKey(key);
2: local=head;
3: for int R=0; R< keySize;R+=arrayNodePow do
4: pos=hash&(arrayLength-1);
5: hash=hash >> arrayNodePow;
6: node= getNode(local,pos)
7: if node == null then
8: return false;
9: else if isMarked(node) then

10: local=expandTable(local,pos,node,R);
11: else if !isArrayNode(node) then
12: if node-> hash == hash then
13: if CAS(local[pos], node, null) then
14: free(node);
15: return true;
16: else
17: node2=getNode(local,pos);
18: if isMarked(node2)∧unmark(node2)==node then
19: local=expandTable(local,pos,node,R);
20: else if isArrayNode(node2) then
21: continue;
22: else
23: return true;
24: else
25: return false;
26: else
27: local=node;

D. Supporting Functions

This section briefly describes the supporting functions ref-
erenced in the pseudocode of the preceding algorithms.
(a) allocateNode: a simple function to allocate a node

using a wait-free memory management scheme (see Sec-
tion IV-E).

(b) expandTable: adds a new arrayNode when there is a
hash collision, or a high amount of contention on a single
memory location which is indicated by the presence of a
markedDataNode. This operation uses at most a number
of CAS operations equal to the number of threads. No
other thread will attempt to work on a markedDataNode,
except to attempt to perform the expansion itself.

(c) free: a function to free memory using a wait-free memory
management scheme (see Section IV-E).

(d) getNode: returns the pointer held at the specified position,
pos, on the arrayNode, local, that is currently being
examined.

(e) isMarked: returns true if the pointer has a bitmark at its
least significant bit; this reveals a markedDataNode.

(f) isArrayNode: returns true if the pointer has a bitmark
at its second-least significant bit.

(g) markDataNode: uses an atomic and operation to place a
bitmark on the value held at pos on local.

(h) unmark: expects a pointer to a dataNode or a
markedDataNode, and returns a pointer without a mark
on the least significant bit.

E. Memory Management

This section discusses the allocation and reuse of memory.
When designing concurrent applications, choosing an appro-
priate memory management scheme is important, and the one
chosen must be thread-safe. As the standard memory allocator
is blocking, special provisions must be made for lock-free and
wait-free programs. In order for the hash map to behave in a
wait-free manner, the user must choose a memory allocator
that can manage memory in a wait-free manner [30].

Furthermore, this memory manager must be able to handle
the ABA problem [5] correctly, because this problem is
fundamental to all CAS-based systems [24]. We allow the user
to choose which memory management scheme they use with
our hash map. This adds the benefit of allowing our hash map
to use hardware-specific memory management schemes.

There are several existing approaches to wait-free memory
management. One approach for wait-free memory reclamation
is hazard pointers [24]. An approach that includes wait-free
memory allocation and reclamation is found in [30]. For
testing purposes we use the Lockless library [20] for lock-
free memory allocation, and a custom approach to memory
management that is a mix of the techniques developed in [12]
and [24]; the details of correct memory management and
allocation in wait-free data structures is beyond the scope of
this paper.

V. CORRECTNESS

In this section we outline a correctness proof. For brevity,
we give informal proofs; these follow the style in [22].
Several useful definitions follow. Abbreviations of the form
P10 are used; the letter is the first letter of the corresponding
operation e.g. P10 refers to the tenth line of the put algorithm
pseudocode.
(1) For all times t, a node is in the hash map at t, if and only

if at t it is reachable by following pointers starting from
the head.

(2) For all times t, the state of the hash map is represented
as Sn,m,p where n, m, and p are defined as follows.
(a) n : the number of dataNodes in the hash map at t.
(b) m : the number of markedDataNodes in the hash map

at t.
(c) p : the number of arrayNodes in the hash map at t

(this excludes the main array).
(3) Unmark represents any one of the following lines: P16,

P27, P45, P51, R10, R19.
For example, the hash map is in state S2,1,0 if it con-

tains exactly two dataNodes, one markedDataNode, and zero
arrayNodes.
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Lemma 1. The hashed key of a node never changes while
the node is in the hash map.

Lemma 2. A markedDataNode is not unmarked until the
corresponding expansion has occurred.

Lemma 3. An arrayNode is never removed from the hash
map.

A. Safety

To prove safety, we attempt to prove Claim 1.
Claim 1. All transitions are consistent with the hash map’s

semantics. If the hash map is in a valid state, then if a CAS
succeeds a correct transition occurs, as shown in the state
transition diagram in Figure 3.

Transitions that do not change the state, transitions that
could occur on the execution of line P10 from S1,1,0 and S2,1,0,
and the possible transitions that could occur upon execution
of line P51, have been omitted for clarity; P10 marks a node,
and P51 adds a new arrayNode.

The hash map is in a valid state, if and only if it matches
the definition of some state Sn,m,p that is reachable, through
the specified transitions, from the initial state S0,0,0. The state
of the hash map changes upon the successful execution of the
operations in any one of the following lines: P10, P19, P16,
P27, P45, P51, R10, R19, R13, R18 (see Section IV-C).

Operations that fail a CAS operation may still be considered
to have linearized. This allows the concurrent execution of
a put and a remove, on the same key, to both complete
execution after the successful completion of only one of the
operations; the other operation will not be retried, because it
has been canceled out in a manner similar to the elimination
scheme described in [11]. The operations that fail a CAS,
but still linearize do not cause changes in the state, the other
thread’s successful CAS causes a change in state, except in
one case.

In the case that a put causes a remove operation to fail, and
the remove is considered to have occurred, the state changes
twice. First, from Sn,m,p to Sn+1,m,p, because of the successful
put. Then, the state changes from Sn+1,m,p to Sn,m,p, because
of the remove. This second state change is accomplished using
the transition that is labeled R13, R18 — specifically, the line
that represents this case, R18. This second change of state is
the only time that the state changes without a corresponding
CAS being executed.

We prove Claim 1 by induction. In the basis step, we assume
that the hash map is in the valid, initial state S0,0,0. We take
Claim 1 to be the induction hypothesis. In the inductive step,
we show that, at any time t, the application of any transition
on a valid state yields a valid state.

Lemma 4. If successful, the atomic and operation in line P10
takes the hash map to a valid state, and marks a dataNode.

Lemma 5. If successful, the CAS in line P19 takes the hash
map to a valid state, and inserts a dataNode into the set.

Lemma 6. If successful, the CAS in line P37 does not change
the state, and updates the value associated with a key.

Lemma 7. If successful, the CAS in line P51 takes the hash
map to a valid state, and adds an arrayNode.

Fig. 3: A state transition diagram for the hash map.

Lemma 8. If successful, the CAS in line R13 takes the hash
map to a valid state, and removes a dataNode from the set.

Lemma 9. If successful, the CAS on any of the lines in
Unmark takes the hash map to a valid state and replaces
a markedDataNode with an arrayNode that contains an
unmarked version of the original markedDataNode.

Theorem 1. Claim 1 is true at all times.

B. Linearizability

Our hash map is linearizable, because all of its operations
have linearization points (see IV-C for details).

The linearization points below are presented for each op-
eration, when executed concurrently with any other operation
of the hash map. If there is no concurrent execution, then
linearizability is not applicable, because the definition of a
linearization point is meaningless when defined on a single
operation. In the case of a single operation, that of sequential
execution, correctness of the algorithms becomes much easier
to prove; such proofs are omitted.

Lemma 10. Every get operation takes effect upon its read
on line G6.

Lemma 11. Every remove operation that returns true takes
effect upon its CAS on line R13, or its read on line R18 (see
Section IV-C).

Lemma 12. Every remove operation that returns false
takes effect upon its read on line R6.

Lemma 13. Every put operation takes effect upon its CAS
on line P19 or P37, or its read on line P22 or P40 (see
Section IV-C).

Given the derived linearization points, we are able to pro-
vide a valid sequential history from every concurrent execution
of the hash map’s operations; this proves Theorem 2.

Theorem 2. The hash map’s operations are linearizable.

C. Wait-Freedom

To prove wait-freedom we must show that every call to put,
get, and remove returns in a bounded number of steps [18].
This is trivial to prove for the get operation as it is bounded by
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a for-loop, that runs at most maxDepth times, and its progress
is unhindered by the side effects of other operations. To prove
wait-freedom for put and remove we need to show that the
number of operations that may linearize before a particular
operation is bounded [18].

We need only consider those operations that act on the
same position in the hash map, as the progress of disjoint
operations can only be hindered by expansions, where the
maximum number of expansions for any position is equal to
maxDepth− currentDepth; in the worst case maxFailCount
will be reached upon every expansion. This means that
the bounds of the operations that modify the hash map,
put and remove, are equal to (maxDepth− currentDepth) ∗
maxFailCount, which are all constants.

All of these operations complete in a finite number of steps;
this is expressed in Theorem 3. Theorem 4 follows directly
from Theorems 1, 2, and 3.

Lemma 14. The get operation completes in a number of
steps equal to maxDepth.

Lemma 15. The put operation completes in a number of
steps equal to (maxDepth− currentDepth)∗maxFailCount.

Lemma 16. The remove operation completes in a number
of steps equal to (maxDepth−currentDepth)∗maxFailCount.

Theorem 3. All operations of the algorithm are ∈ O(1), in
the worst case.

Theorem 4. The algorithm is wait-free.

VI. PERFORMANCE EVALUATION

We tested several algorithms against our wait-free im-
plementation; we tested with two different values for
arrayLength, to show the space-time trade-off that this
parameter represents. The values that we chose for the
arrayLength were four (WaitFree-4) and five (WaitFree-
5). As there are no other wait-free hash maps in the liter-
ature we chose the best available lock-free tables as well
as a standard locking algorithm to test against. The lock-
free algorithms that we compare against are Split-Ordered
Lists (Split-Ordered) [29] and Michael’s lock-free hash map
(Michael) [22]. The locking solution that we include is the
C++11 standard template library hash map protected by an
optimized global lock (Lock-STL) [16].

Careful attention has been paid to the comparability of
the different implementations; for example, all hash maps
are able to accept different initial capacities. We only timed
the operations of the hash map, avoiding any performance
overhead of memory management and any overhead due to the
testing itself. All data shown is the average of five runs, which
were made to minimize the effects of any extraneous factors
in the system. All tests were run on an HP Z600 workstation,
with an Intel X5670 hex-core processor running at 2.93 GHz
(with Turbo Boost disabled), and six gigabytes of RAM. The
machine was running 64-bit Ubuntu Linux version 11.04, and
all code was compiled with g++, with optimizations enabled.

The testing variables for the graph presented in Figures 4
and 5 include creating a hash map that has an initial capacity
of 218 = 262,144 elements. This number of elements is used

because it is the closest power of two to five percent of the
expected number of inserted elements in the test case that
represent the typical usage scenario; thus, testing the ability
of each hash map to resize to accommodate new elements.

This hash map was filled to one percent of its capacity
and then 50,000,000 operations were performed. The Boost
random number generator [1] was used to avoid the locking
version in the standard C++ implementation, while generating
test cases concurrently. Using these numbers, each thread was
given a stack that included the function calls and operands that
were generated.

We selected three different distributions of operations; the
first distribution contained 88% get, 10% put, and 2% remove
operations (see Fig. 4a). This distribution was selected because
it was reported to be typical for use of this data structure [29].
The other distributions that were tested represent the inversion
of this test (10% get, 88% put, 2% remove, see Fig. 4c), and
a more even distribution (34% get, 33% put, 33% remove,
see Fig. 4b). Memory tests were performed for each of these
distributions, and the results can be seen in Fig. 5a, 5c, 5b.

The performance results in Figures 4 and 5 show that, on
average, our wait-free algorithm outperforms the traditional
blocking design by a factor of 5 or more, and it performs
faster than the lock-free algorithms by a factor greater than
8. The lack of scalability of the blocking solution is a result
of the fact that the lock is applied to all operations, not only
those that conflict. Both lock-free solutions scale; however,
they perform worse when more put operations are performed,
because the put operations trigger more global resizes. Due
to the incremental approach that we take to resizing the hash
map, we see performance improvements over the other designs
in the tested scenarios.

On average, the lock-free algorithms use 11% less memory
than our algorithm, and the blocking approach uses 4% less
memory than our design. The increase in memory usage that
our design demonstrated is explained by the arrayLength
being set higher to improve performance by presenting more
open positions to a thread performing a put operation.

VII. RELEVANCE

We believe that our wait-free hash map allows significant
performance increases across any shared-memory parallel ar-
chitecture. The most pertinent use of our data structure would
be in a real-time system where the guarantees of a wait-free
algorithm are critical for accurate operation of the system [30].
An example of our hash map in such a system is algorithmic
trading. In this case, several threads listen to network updates
on stock values that are stored in a hash map by ticker symbol.
Due to the rate of change of stock prices, a fast data structure
is needed.

Our design could provide speedup to a large number of
applications, such as those in the fields of: computational
biology[21]; simulation [27], [33]; discrete event simula-
tion [17]; and search-indexing [35]. Specifically, our data
structure could be used in biological research where both
search and computation can involve retrieving and processing
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vast libraries of information [32]. Additionally, our hash
map will be used in the implementation of a popular net-
work performance management software solution provided by
SevOne [28].

VIII. CONCLUSIONS AND FUTURE WORK

We presented a wait-free hash map implementation. Our im-
plementation provides the progress guarantee of wait-freedom
with significant performance gains over the tested designs.
We discussed the relevance of this work and its applicability
in the real-world. To facilitate real-world applications, the
code for the algorithms that we discuss here is open source,
and we intend to make it freely available on our website at
cse.eecs.ucf.edu; at present, the code is available under a BSD
license upon email request.

We are currently developing a project that applies advanced
program analysis provided by POET [34] to automatically
replace standard, blocking hash maps with our wait-free hash
map in real-world applications and a number of benchmarks
such as PARSEC [2].
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