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Abstract—This paper presents a synchronization framework
for parallel computing heterogeneous processing elements, which
are controlled by a RISC processor. The communication delay
between RISC and processing elements is a key issue if the RISC
is not closely attached to the processing elements. Recent syn-
chronization approaches neglect communication delays or require
low communication delays. This results in a low synchronization
rate between RISC and PEs. In order to overcome this delay,
a special hardware-based synchronization approach is proposed
that reduces the communication overhead and increases the
number of executable tasks per time unit. Further, it supports
parallel execution of independent hardware tasks. The approach
was evaluated for a modular coprocessor architecture containing
several processing elements for image processing tasks. The
coarse-grained parallel execution of independent tasks signifi-
cantly improves the speed of an exemplary application for aerial
image based vehicle detection on straight highways.

I. INTRODUCTION

In recent years, embedded heterogeneous multiprocessor
systems have emerged as a common approach for implement-
ing complex multimedia applications in embedded systems.
They are used when computation intensive parts of the appli-
cation need the performance of a digital signal processor and
when a microcontroller is sufficient for control overhead [1].

A common hardware architecture approach for embedded
real-time signal processing is the combination of a RISC pro-
cessor with a coprocessor. As a result of its programmability,
a RISC is well suited for execution of high-level algorithms,
which contain complex data dependent control structures.
RISCs are often integrated into systems-on-chip. Computa-
tionally intensive signal processing algorithms are mapped to
dedicated processing elements (PEs) inside of the coprocessor.
Communication between different PEs is performed via a
communication network and memories [2] [3] [4] [5].

If the coprocessor is attached to the auxiliary I/O ports of
the RISC, the development of real systems can benefit from
available off-the-shelf RISC processors and operating system
support. Data transfers between RISC and external coprocessor
are relatively slow, so that such an architecture is only suitable
for executing applications in which a significant amount of
processing can be performed by the coprocessor without RISC
synchronization [6].

Signal processing algorithms can be formulated as com-
putation tasks with input and output data. Here tasks are
denoted as software tasks if they are mapped to the RISC or
as hardware tasks if they are mapped to a specific PE inside

the coprocessor. Hardware tasks should be executed without
preemption in order to save overhead in terms of hardware
cost and context switching time [7]. High system efficiency
can be achieved, if the RISC and the coprocessor PEs are
always working in parallel. Thus, scheduling mechanisms are
necessary, that synchronize the RISC and the PEs inside of
the coprocessor. The scheduling must be dynamic in order to
allow data dependent control structures in the application.

One approach is a central task scheduler for synchroniza-
tion. The task scheduling process can be divided into three
phases: In the first phase, the task scheduler checks if a
resource for processing of the next task is available and if data
conflicts are solved. Software tasks can be executed afterwards
by the RISC. The hardware task opcode has to be transferred
to the PE. In the second phase, the hardware task is handled
by the PE. In the third phase, the scheduler has to wait until
the PE has finished before assigning a new task. The PE has
to send a finish response flag to the scheduler, because the
execution time depends on the tasks input data for a variety
of algorithms and cannot be predicted therefore.

If scheduling and synchronization are completely imple-
mented in software on the RISC, hardware overhead is kept
small. At least, for synchronization of a hardware task two data
transfers between RISC and PEs (task start, finish response)
are required. In case that the task execution time is much
higher than the synchronization time, the communication over-
head is small. If the task execution time and its synchronization
time are in the same order of magnitude, then the PEs are
utilized inefficiently. An example for this behavior is the
sequential execution of a high number of tasks on one PE
if the execution time of each task is very short.

As a solution, parts of task scheduling, especially synchro-
nization can be relocated into hardware, where fast internal
bus systems with low latencies are available. Then, even for
short tasks, the synchronization overhead is kept small.

Approaches that shift synchronization tasks into hardware
are mainly required for real-time operating systems. The
intention is to outsource scheduling algorithms from OS into
separate hardware task schedulers [8] [9] [10]. The critical
issue is the computation of the task that has to be scheduled
next. Since these approaches are scheduling preemptive tasks,
they are not suited for scheduling of non-preemptive hardware
tasks containing data dependencies.

In [11] the approach of shifting synchronization tasks into
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hardware was applied to SoCs. Both, software and hardware
functions, are modeled as threads. The scheduling hardware
comprises several modules and is attached to the system bus.
The approach is suited for supporting the RISC with control of
a high number of tasks. Operations like thread scheduling or
parameter setting require up to 50 clock cycles. The scheduling
of software tasks requires a communication structure with low
latencies between RISC and hardware. In particular for short
tasks, scheduling of both hardware and software tasks causes
much traffic between RISC and coprocessor.

A hardware-based scheduling unit in conjunction with a
real-time programming model for heterogeneous multipro-
cessor systems-on-chip is presented in [12]. All processing
units, host processors and the scheduling unit are using shared
memories. Hardware functions are executed as non-preemptive
threads. The scheduling unit maps the tasks to the processing
units, controls data dependencies and task priorities. Schedul-
ing of tasks requires approximately 60 clock cycles. The
approaches [11] and [12] require more than 50 cycles for task
scheduling which limits the efficient execution of short tasks.

This paper presents a new list-based synchronization ap-
proach, which provides flexibility for software scheduling
while keeping hardware overhead low. Pre-processing of task
scheduling is performed in software, which facilitates utiliza-
tion of arbitrary scheduling algorithms and avoids hardware
communication for software tasks. Synchronization and depen-
dency control are swapped out to a centralized hardware-based
Dynamic Resource Scheduler unit (DRS). The scheduling
approach is embedded into a C++ based application pro-
gramming framework. An FPGA-based modular coprocessor
architecture [5] is used in order to evaluate the efficiency of
the proposed Dynamic Resource Scheduler unit.

Throughout the whole paper, an object detection application,
which detects vehicles on straight highways in aerial images,
is used for illustration and evaluation of the framework [13]. A
simplified task graph is shown in Fig. 1, which consists of two
parallel sub-graphs. The first one creates a list of all significant
lines of the input image. Therefore, a Hough transform and
a line detection algorithm are performed. The second sub-
graph segments the input image into shapes and provides a
list containing vehicle candidates. In the last step, highways
are extracted from parallel lines. According to these results, the

hough_

transform

vehicle_

filterlabeling

input output

line_

detection
hough_

space

shapes

line_

list

datatask

vehicle_

detection

vehicle_

list

Fig. 1. Task graph of exemplary object detection application

vehicle list is filtered in order to discard all vehicle candidates
outside of the highways. The vehicle filter is mapped to the
RISC, whereas all other tasks are mapped to the coprocessor.

This paper is organized as follows: Section II introduces
the list-based synchronization approach. Section III shows
the hardware architecture of the proposed Dynamic Resource
Scheduler unit in detail. The software interface and program-
ming model are presented in section IV. Results are given in
section V. Finally, section VI concludes this paper.

II. LIST-BASED SYNCHRONIZATION

In this section the synchronization rate of a simple RISC
system, which has to control several PEs, is introduced. The
synchronization rate ftask is defined as the number of tasks
which can be executed per second. Fig. 2 shows a sequential
task graph with n dependent tasks. A task can be started when
all preceding tasks with data dependencies have been finished.
In terms of execution time, this task graph shows the worst-
case scenario due to the sequential nature.

The synchronization rate is calculated for the architectures
shown in Fig. 3. First, the RISC performs all of the syn-
chronization functions in software. Subsequently, a Dynamic
Resource Scheduler unit is introduced, which is integrated into
the coprocessor system.

A linear model is assumed for communication between
RISC and coprocessor. The communication time tc consists
of a constant latency tl,RISC for initiating the transfer. This
latency includes all overhead caused by the operating system,
the memory management unit of the RISC, and several bus
systems running at different clock cycles. The data size m
of the task opcode, and the bandwidth bRISC of the bus are
additional parameters of the linear model. Then tc is computed
as follows:

tc,RISC = tl,RISC +
m

bRISC
(1)

A. RISC-Based Synchronization

First, it is assumed that the RISC performs the complete
synchronization of the PEs, as shown in Fig. 3 (a). In order
to activate a coprocessor PE, the RISC transmits a task call of
data size m to the PE. For simplicity, the execution time of
the task is consistently denoted by tex. The time for setting a
response flag after the execution of a task is also modeled with
tl,RISC . Therefore, the whole task execution time for starting,
executing and sending a response flag computes to:

ttask,RISC = 2tl,RISC +
m

bRISC
+ tex (2)
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A high communication bandwidth between RISC and co-
processor is assumed. Transferring the task opcode to the PE
requires only a few bytes and therefore tl,RISC >> m

b is
valid. Thus, (2) is:

ttask,RISC ≈ 2tl,RISC + tex (3)

Thereafter, the maximum synchronization rate computes to:

ftask,RISC =
1

ttask,RISC
≈ 1

2tl,RISC + tex
(4)

Eq. (4) shows that for short tasks with tex < tl,RISC the
communication latency tl,RISC limits the maximum synchro-
nization rate.

B. DRS-Based Synchronization

An approach that improves the synchronization rate is list-
based synchronization. Instead of synchronizing each task, the
opcode of several consecutive tasks is sent as a task list to a
Dynamic Resource Scheduler unit, which is integrated into the
coprocessor. Fig. 3 (b) shows the resulting architecture. The
required time for transmitting a list of n tasks and the response
signal after list completion is:

tc,list = 2tl,RISC +
n · m
bRISC

(5)

When the DRS receives a task list, it distributes the tasks
to the corresponding PEs. Subsequent to the processing of all
tasks of a task list, the DRS sends a response signal back to
the RISC. The communication structure inside the coprocessor
is modeled according to (1) with a constant latency tl,copro

and bandwidth bcopro. It is assumed that a high speed on-chip
communication network between DRS and PEs is available
and thus tl,copro << tl,RISC and bcopro > bRISC are valid. If
the bus constants of the RISC in (2) are replaced by the bus
constants of the coprocessor, the execution time tex,list for a
task list with n dependent tasks is:

tex,list = n · (2tl,copro +
m

bcopro
+ tex) (6)

The processing time for the list is the sum of (5) and (6):

tlist = 2tl,RISC +
n · m
bRISC

+n · (2tl,copro +
m

bcopro
+ tex) (7)

Dividing (7) by n yields the processing time of one task
ttask,DRS when using the Dynamic Resource Scheduler unit:

ttask,DRS =
2tl,RISC

n
+

m

bRISC
+2tl,copro+

m

bcopro
+tex (8)

The communication time between DRS and PEs can be
neglected when it is closely integrated into the coprocessor
bus system. Therefore, the bus arbiter has to grant the DRS
without much delay in case of bus access conflicts. According
to the simplification of (2), the data transmission time m

bRISC

can be neglected, too. Subsequently, the synchronization rate
ftask,DRS is computed to:

ftask,DRS ≈ 1
2tl,RISC

n + tex

(9)

As shown later for an embedded system, 2tl,RISC is equal
to 28 µs. This value corresponds to 2800 coprocessor clock
cycles if the clock frequency of the coprocessor is equal to
100 MHz. For example, this time is sufficient to process
a small region-of-interest (ROI). If the task list contains n
similar ROI tasks, the comparison of (4) and (9) shows that
the introduction of the Dynamic Resource Scheduler unit
reduces the impact of the RISC/coprocessor communication
latency approximately by factor n. The value of n has to be
chosen carefully, because it affects the complexity for task list
generation and hardware cost of the DRS adversely.

III. DYNAMIC RESOURCE SCHEDULER

A. Requirements

A dedicated architecture is preferred that requires only a few
clock cycles for task synchronization. The main functionality
of the DRS consists of receiving task lists and starting tasks
on the PEs. A task comprises the following elements:

• PE type
• PE configuration data
• Read addresses
• Write addresses
• Dependencies on other tasks
In order to improve the workloads of the PEs, an out-of-

order execution is desired, which requires conflict manage-
ment. The first type of conflicts are resource conflicts, which
have to be solved by the DRS. The second type of conflicts
are Read after write (RAW), Write after read (WAR), and Write
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after write (WAW) data conflicts. Data conflicts have to be
solved by the DRS [14].

The DRS stores the current state of each PE (free, busy) and
assigns tasks to free PEs only. The analysis of data conflicts
is more complex than the analysis of resource conflicts. It
requires information about data dependencies between tasks.
For each task in the list, all of the read and write addresses
can be compared to all addresses of the previous tasks, which
causes significant computational overhead. In order to avoid
this high number of comparisons, in software a special data
structure for recording data dependencies is used within task
list generation. Afterwards, the dependencies on other tasks
are transferred within the task list.

B. Hardware Implementation

A dedicated architecture of the proposed DRS [15] that
fulfills the requirements above is shown in Fig. 4.

A bus interface connects the DRS to the system bus of the
Modular Coprocessor Architecture [5]. It is used for receiving
task lists and communication with the PEs.

A double buffering approach is implemented for the task
list storage. One task list is executed by the DRS. Parallel
to the processing of the first list, the following task list can
be uploaded to the shadow memory of the DRS. Hence, the
communication delay between RISC and coprocessor can be
partially masked. The following list is activated automatically
after finishing the first list. Different memory types are used for
task list storage. PE type information and task dependencies
are stored in internal registers. Therefore, all task conflicts can
be analyzed in parallel, which improves synchronization time.
PE address and configuration are stored in SRAM, because
only data of one task is accessed when the task is started.

The Register File stores all of the status information
required during the task list processing. Information about
the state (idle, running) of all processing elements and the
response configuration are stored in this unit. For task list
execution and conflict management, status information for
each entry of the task list is provided. Therefore, following
states are distinguished:

• No task
• Waiting for execution
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Task List

Shadow

Execute

ResponsesExecution

Controller

Response

Controller
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RISC-Response

Resources

Task Status

Task
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Fig. 4. Architecture of the Dynamic Resource Scheduler unit

• Running
• Finished

The Task Controller is composed of two sub-modules.
Before a task can be started, conflicts of all tasks have to
be analyzed by the Execution Controller. In order to minimize
the required time, all tasks of the list are analyzed in parallel.

Tab. I shows the format of the task list on the basis of
the application example. Dependency bits are set for a fixed
number of preceding tasks. The tasks hough transform and
labeling are the first tasks of the task list. Both can be executed
immediately, because there are no dependencies on previous
tasks. The task vehicle detection depends on the result of the
task labeling, which is one list position above, and therefore
the dependency bit -1 is set. The task line detection depends
on the result of the task hough transform. The dependency
bit -3 is set, because the task hough transform is three list
positions above. The DRS starts both tasks vehicle detection
and line detection after receiving the finish responses of the
tasks labeling and hough transform, respectively. For each
task, a 1-hot-code is used for coding of the required PEs. Thus,
the logic effort of parallel conflict analysis is kept small. The
last entry of the task list is empty.

After analyzing conflicts, the Execution Controller selects
a task from the list and transmits the task to the associated
PE. After task execution, the PE sets its response signal.
The response signals of all PEs are simultaneously scanned
by the Response Controller, and in case of set signals, the
corresponding status flags are updated in the Register File.

In order to improve the flexibility of the DRS, the following
basic parameters have to be configured: The maximum length
of the task list must be set as trade-off between performance
and chip area. Additionally, a dependency parameter can be
configured, which allows tasks only dependencies on a fixed
number of previous tasks. This reduces the number of possible
conflicts that have to be analyzed and the chip area of the
Execution Controller. If this number is exceeded by two
dependent tasks, special bridging tasks have to be inserted
in the task list, which increase the task list size slightly.

Tab. II shows the concept of inserting a bridging task into
a task list, which allows only dependencies on two preceding
tasks. The bridging task is inserted after the task labeling in
order to create a dependency between the first and the last
task. In this small task list example, the bridging task can be
avoided if the task positions of the tasks vehicle detection and
line detection are swapped.

TABLE I
TASK LIST FOR DRS UNIT, LENGTH = 5, DEP. DEPTH = 3

Address & Dependencies Processing Element
Config -1 -2 -3 Hough Label V det L det
hough 0 0 0 1 0 0 0

labeling 0 0 0 0 1 0 0
v det 1 0 0 0 0 1 0
l det 0 0 1 0 0 0 1
NOP 0 0 0 0 0 0 0
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TABLE II
TASK LIST FOR DRS UNIT, LENGTH = 5, DEP. DEPTH = 2

Address & Dependencies Processing Element
Config -1 -2 Hough Label V det L det
hough 0 0 1 0 0 0

labeling 0 0 0 1 0 0
BRIDGE 0 1 0 0 0 0

v det 0 1 0 0 1 0
l det 0 1 0 0 0 1

IV. HW/SW INTERFACE

The HW/SW interface connects the DRS to the application
software, running on the RISC. On the one hand, it provides a
programming model for simple application development. On
the other hand, it executes the application and extracts task
lists dynamically and synchronizes with the DRS [16]. The
interface is mapped to the RISC.

A. Programming Model

In order to facilitate platform independent application de-
velopment, it is recommended that the programming model
abstracts from hardware. Hence, synchronization mechanisms
for task execution and data synchronization between RISC and
coprocessor have to be handled by the HW/SW interface at run
time. Various data types are used by the tasks, which have to
be supported by the synchronization interface. The data must
be stored in the RISC memory if used by RISC tasks or in
coprocessor memory if used by coprocessor tasks. In order
to abstract from hardware, memory allocation for both, RISC
and coprocessor memory, has to be done by the interface.

Hence, the HW/SW interface uses uniform data objects for
managing task and data synchronization. Memory pointers for
RISC and coprocessor memory allow the integration of any
data type within the data objects. Furthermore, each data object
includes special flags that save the memory type (RISC or
coprocessor) in which the data was modified last. According
to these flags, the interface allocates memory for the data
object and decides whether data transfers between RISC and
coprocessor are required or not.

The resulting programming model allows to compose ap-
plications by describing program structures sequentially. The
system developer has to include information in the static
configuration file of the HW/SW interface about tasks that
can be executed in hardware. Thus, the HW/SW interface
automatically chooses the correct resource and determines task
dependencies on the basis of the data objects used by the tasks.
A sequential C++ code for the application framework, which
implements the exemplary application, is shown in Fig. 5.

B. Task Execution Control

When application code is executed, initially a common task
list for RISC and coprocessor tasks is created. Task entries
are buffered for each function. Then the HW/SW interface
analyzes the data synchronization flags of the data objects
inside the task list for mandatory data transfers between RISC
and coprocessor memory. A data transfer has to be performed

// Initialize data objects

data_obj input = new_image(WIDTH,HEIGHT);

…

data_obj output = new_vehicle_list(MAX_VEHICLES);

// Application body

hough_transform(input,hough_space);

labeling(input,shapes);

vehicle_detection(shapes, vehicle_list);

line_detection(hough_space,line_list);

vehicle_filter(line_list,vehicle_list, output);

Fig. 5. C++ code of exemplary application using data objects

if a RISC task computes data that is read by a coprocessor
task afterwards or vice versa. In order to transfer data, the
HW/SW interface adds data transfer tasks to the task list. If
mandatory, the Task Execution Control unit allocates both,
RISC and coprocessor memory.

If no control structures are inside the application code that
depend on data objects, this approach can be used as shown
before. A RAW data conflict occurs if the decision of a control
structure (if-else, case, for, ...) depends on the result of a data
object which will be modified by a task in the current task
list. In order to solve this conflict, a special synchronization
operation has to be inserted manually or by a parser that stops
the generation of further tasks until the data conflict is solved.

Next, the prepared task list is ready for execution. Task
processing is managed by a Task Dispatcher module. It is
responsible for controlling task execution by considering task
dependencies and creating coprocessor task lists for the DRS.
The order of task execution is determined by the position
within the task list. If the dependency depths of the tasks are
exceeding the maximum supported dependency depth of the
DRS, then bridging tasks are inserted into the task list.

The Task Dispatcher unit also realizes data synchronization
between both processor memory environments and allows
parallel task execution by RISC and coprocessor if it is
supported by the application.

C. Parallelizing Task Execution

In order to improve system efficiency, the task list can
be optimized for parallelizing task execution. Therefore, a
Task List Sorting module changes the order of tasks in the
common task list before creating a coprocessor task list by
the Task Dispatcher. It is intended to group tasks, which have
to be processed by the coprocessor. This results in longer
coprocessor task lists and the probability of parallel task
execution increases.

In addition, RISC tasks are grouped after coprocessor tasks
inside the common task list. After transferring the coprocessor
task list to the DRS, several RISC tasks follow, which can be
executed in parallel to the coprocessor tasks.

The resulting HW/SW Task Scheduling interface is shown
in Fig. 6.
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D. Pipelining of Image Processing Applications

If a real-time stream of independent images is processed, the
number of independent tasks increases. Therefore, a pipelined
processing of consecutive images increases utilization ratio
and data throughput of the system. The HW/SW interface
as described in the previous sections supports image pipeline
only if the application code is expanded. This results in more
programming effort and increased code size.

A more convenient approach is outsourcing of the image
pipelining functionality into the HW/SW interface. Hence,
the HW/SW interface instantiates an application several times
by using a thread based solution. Thus, an application is
implemented for processing only one image and this single
application is used by several threads, which are controlled
by the HW/SW interface.

The management of these application threads is realized by
a thread scheduler. It is based on round robin scheduling and
activates one thread at once. An activated thread is allowed
to create a limited number of tasks during thread activation.
Afterwards, the thread scheduler chooses the next thread for
creating tasks. Overall, the HW/SW interface has access to
more independent tasks, which can be used for the creation of
longer task lists for the Dynamic Resource Scheduler.

V. RESULTS

A. System Integration

In order to evaluate the hardware based Dynamic Resource
Scheduler, it was integrated into a modular coprocessor ar-
chitecture [5]. The architecture, shown in Fig. 7, comprises
a performance optimized 128 bit multi-layer system bus [5]
that connects several PEs [17] for computation of image
processing algorithms. Internal and external memories are
available for data exchange between PEs. A control interface
is used for communication between RISC and coprocessor.
Synchronization is performed by the DRS, which was attached
to the bus system. The coprocessor architecture was mapped to
a Xilinx Virtex 5 FPGA. As shown in Tab. III the coprocessor,
excluding the DRS unit, occupies approximately 29000 LUTs
and 384 KB internal Block RAM. 512 MB DDR RAM and
4 MB SRAM are attached to the external memory interfaces.

B. Dynamic Resource Scheduler

The size of the task list and the maximum dependency depth
are the parameters with the most impact on the hardware cost
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Fig. 7. Architecture for evaluation of DRS and framework

of the DRS unit. Thus, net lists with different configurations
were created with Synplify Pro 9.6.2 in order to derive a
suitable parameter set. Fig. 8 shows the hardware cost for
several task list sizes, which was measured in look-up tables
(LUTs). Due to parallel analysis of all tasks, the number of
LUTs increases approximately linearly with the task size. For
task list sizes up to 32, the hardware cost is just constant with
increasing dependency depth, because the dependency check
logic is much smaller than the remaining control logic of the
DRS.

Thus, the maximum dependency depth can be used and
the dependency size check in the HW/SW interface can be
switched off, which saves computational effort. For longer
task lists, there is a significant impact of the dependency depth

TABLE III
SYNTHESIS RESULTS OF MODULAR COPROCESSOR ARCHITECTURE

Unit Look-up Tables 4 KB Block RAMs
Bus System 12719 1

Control 3063 11
Internal Memory / Interfaces 824 9

2D FIR Filter 1976 9
Thresholding 676 4

Labeling 4455 51
Hough Transform 5333 11

Dynamic Resource Scheduler 2638 5
Overall (without DRS) 29046 96

Overall (with DRS) 31684 101
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DRS
Frequency 166
FPGA XC5VLX330-2
Synplify Rev. 9.6.2
Resources 8
IRQs 10
BRAMs 5

Tasks 32 32 32 32 64
Dep Depth 4 8 16 32 4
LUTs
BRAM 5 5 5 5 5
Freq.

Dependency Depth 8 Tasks 16 Tasks 32 Tasks 64 Tasks 128 Tasks
1 655 1099 2028 4271 8818
2 655 1095 2058 3967 9169
4 681 1160 2152 4491 9343
8 686 1196 2270 4866 10221

16 1244 2507 5396 11512
32 2683 6523 14223
64 7201 18163

128

List Size LUTS
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Fig. 8. DRS: Dependency depth over LUTs for different task list sizes

on the hardware costs which suggests to use a configuration
with decreased dependency size. For all shown configurations,
the clock frequency is higher than 150 MHz and 20 KB
Block RAM are required for task storage. 10 clock cycles
are required for synchronization of dependent tasks.

A task list size of 32 tasks with maximum dependency depth
was used for the evaluation of the framework. It is intended to
keep the hardware overhead, caused by the DRS unit and the
software overhead, caused by dependency checks, small. In
this configuration the DRS unit occupies 2638 LUTs, which
is less than 10 % of the whole coprocessor.

C. Synchronization Rate for Short Tasks

Two hardware platforms were used for the evaluation of
the framework. A RISC/FPGA-based embedded system was
chosen in order to derive bus constants between RISC and
coprocessor [18]. The coprocessor was mapped to a Xilinx
Virtex 5 FPGA, which is attached to the expansion bus of
an Intel IXP460 Network Processor [19]. A communication
latency of 14 µs was measured between RISC and coprocessor
as shown in Tab. IV. This value is rather high due to the
reasons given in section II.

For evaluation of the whole framework, an ASIC emulation
system was used [20] instead of the embedded system. The
system connects an AMD Athlon 64 X2 4600+ CPU host PC
to a Xilinx Virtex 5 FPGA. The C++ application code and
the HW/SW interface were mapped to the host PC and the
coprocessor to the FPGA which is running at 100 MHz. The
bus constants of the Intel IXP460 and the AMD host PC are
of the same order of magnitude as shown in Tab. IV.

The synchronization time was measured for short PE tasks
with tex ≈ 0. Without using the DRS, the processing of short
tasks requires 158 µs, which is slightly more than 2tl,RISC .
According to Fig. 2, a task list containing 30 short tasks was
built. The introduction of the DRS reduces processing time to
5.3 µs per task which is 1/30 of the value without using DRS.

D. Task Parallelization

In order to evaluate the parallelization features of the pro-
gramming model, the exemplary object detection application

TABLE IV
MEASURED PARAMETERS OF COMMUNICATION CHANNELS

Device Frequency Channel Latency tl Bandwidth b

Intel IXP460 533 MHz DRS 14 µs 80 MB/s
AMD host PC 2.4 GHZ DRS 61 µs 39 MB/s

DRS 100 MHz PEs 30 ns 1.5 GB/s

was used, which utilizes all of the PEs shown in Fig. 7. The
coarse-grained task parallelism of the application example was
explored for a 16 bit grey scale input picture with 768x576
pixels.

The sequential processing of the sub-graphs {Hough Trans-
formation, Line Detection} and {Labeling, Vehicle Detection}
requires 21.79 ms and 12.11 ms respectively. Thus, the theo-
retical minimum time for parallel execution of both sub-graphs
is equal to 21.79 ms. A processing time of 23.76 ms was
measured, which is 9 % more than the theoretical minimum.
This difference is mainly caused by memory conflicts of
several parallel accessing PEs.

Overall, approximately 10 % increased hardware cost fa-
cilitate 30 % decreased processing time compared to the
sequential execution of both sub-graphs.

VI. CONCLUSIONS

In this paper, a hardware-based synchronization frame-
work for heterogeneous RISC/Coprocessor architectures is
presented. The framework is optimized for a coprocessor that
is connected to the external I/O ports of a RISC.

Contrary to other published frameworks, especially the
communication latency between RISC and coprocessor is
emphasized. This latency limits the maximum synchronization
rate when short coprocessor tasks are executed. The impact of
this latency can be considerably decreased by the introduction
of the proposed list-based hardware synchronization approach.

The framework can also be applied to SoCs containing an
embedded RISC that is closely coupled with the coprocessor.
Compared to the system with an external RISC, which was
discussed here, the communication latency between the em-
bedded RISC and the coprocessor will be reduced. Therefore,
the performance gain of the list-based scheduling approach
will be less, too.

Using the example of an object detection application, it
is shown that the integration of the approach into a C++
based programming framework allows flexible application
development. Furthermore, a parallel execution of independent
tasks is done automatically. The synchronization rate for short
tasks is significantly improved. For example, image processing
applications can be drastically accelerated if a multitude of
small region-of-interests have to be processed in hardware.

Although the approach was evaluated by emulation on a host
PC connected to an FPGA, these results can also be transferred
to embedded systems, because the communication latencies
are of the same order of magnitude.

The implemented concept will be applied on more example
applications, which contain fine-grained tasks. An essential
speedup is expected.
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