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Abstract. Array-OL specification model is a mixed graphical-textual language
designed to model multidimensional intensive signal processing applications.
Data and task parallelism are specified directly in the model. High level trans-
formations are defined on this model, allowing the refactoring of an applica-
tion and furthermore providing directions for optimization. The resemblances
between with the wide-known and used Loop transformations lead us to try taking
concepts and results from this domain and see how they fit in Array-OL context.
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1 Introduction

In the last years, the gap between the performances claimed by the constructors and the
ones achieved with real code has drastically increased. This is caused mainly by the
brutal increase in processor complexity which brought with it a drastic degradation of
the code generated by the compilers. The three major directions for improving the per-
formances are: (1) increasing the instruction parallelism while multiplying the mecha-
nism to allow the simultaneous execution of instructions; (2) improving the speculative
mechanisms that allow the prediction of programs local behavior; (3) the implemen-
tation of a complex memory hierarchy for exploiting as well as possible the time and
space data locality.

For all these directions, the source-to-source transformations techniques have a de-
terminant role. Most of these techniques are represented by transformations applied on
“for” loops which are efficient in the case of code that contains extremely regular data
treatment.

Array-OL (Array Oriented Language) is a modeling language designed in order to
conform to the needs for specification, standardization and efficiency of the multidi-
mensional systematic signal processing [2]. This application domain is characterized
by systematic, regular, and massively data-parallel computations. Array-OL relies on a
graphical formalism in which the signal processing appears as a graph of tasks. Each
task reads and writes multidimensional arrays in an extremely regular pattern.

In this paper we try to make a comparison between loop transformations and the
Array-OL transformations, identify the resemblances and directions for using results
from loop transformations optimization techniques to Array-OL.
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2 Loop Transformations

An important early system level technique, the loop transformation technique, is aiming
at improving the data access regularity and locality. Hence it reduces the overall mem-
ory size requirement and the access frequency to big and slow memories. This is vital
to area, power consumption, and performance. Improved data access regularity and lo-
cality shorten the lifetimes of data elements and increases the memory location reuse
ratio since memory locations can be reused for data elements with non-overlapping
life-times.

Methods are divided into two classes: global methods which deal with each loop
as atomic computation unit and local methods which change the way loops are orga-
nized internally. Here is a list of some of the global transformations that are useful for
optimization. Global methods:

— Code moving that changes the execution order between two loops in the program
without modifying the loops.

— Loop fusion that groups several loops in a unique one, used to reduse the size of
intermediate arrays.

— Loop splitting that represents the reverse of merging. It attempts to simplify a loop
or eliminate dependencies by breaking it into multiple loops which iterate over
different contiguous portions of the index range.

Local transformations explore more in depth the way loops are organized internally:

— Loop tiling acts on partitioning of large array into smaller blocks, thus fitting ac-
cessed array elements into cache size, enhancing cache reuse and reducing cache
size requirements.

— Loop pipelining shifts some instructions from one to several iterations within the
loop body. This is used to increase to data locality.

— Loop collapsing is the reverse of tiling.

These transformations usually are combined in order to achieve best performances.
As an observation, these are just some of the existing loop transformations; the most
common we could say.

2.1 Loop Optimization Techniques

Typically, applying a compiler optimization consists of three steps: decide upon a part
of the program to optimize and the enchainment of transformations to be applied; verify
the correctness of the optimization; and last, applying the transformations. As processor
architectures become more and more complex, the number of dimensions in which
optimizations are possible increase and this makes the decision process very complex.

The complexity of optimization algorithms is the reason why many compilers still
use heuristics. This implies basically the use of the same chain of transformations, the
one that proves to reach a relatively good result in most of the cases.

The complexity of the problem determined the need to introduce ways of repre-
senting the problem (constrains, transformations, cost function) using a more effective
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formalism and which could facilitate the manipulation of concepts like correctness, data
dependencies, cost function. Some approached the problem using Linear Algebra [4]],
Polyhedral Abstraction [[6], graph theory algorithms or Integer Linear Programming [3].
The introduction of formalism is extremely important for the decision part of the op-
timization. Correct and complex optimization algorithms need to be designed around
such formalisms.

3 Array-OL Model of Specification

The initial goal of Array-OL is to give a mixed graphical-textual language to express
multidimensional intensive signal processing applications. These applications work on
multidimensional arrays and their complexity does not come from the elementary func-
tions they combine, but from their combination of the ways they access the interme-
diate arrays. As these applications handle huge amounts of data under tight real-time
constraints, the efficient use of the potential parallelism of the application on parallel
hardware is mandatory.

3.1 Principles
Form these needs, we can state the basic principles that underly the language:

— Array-OL is a data dependence expression language. Only the true data dependen-
cies are expressed in order to express the full parallelism of the application.

— Data access is done through sub arrays, called patterns.

— The language is hierarchical to allow descriptions at different granularity levels and
to handle the complexity of the applications.

— All the potential parallelism in the application should be available in the specifica-
tion, both task parallelism and data parallelism.

— Itis a single assignment formalism.

— The spatial and temporal dimensions are treated equally in the arrays.

The arrays are seen has tori.

The semantics of Array-OL is that of a first order functional language manipulating
multidimensional arrays. It is not a data flow language but can be projected on such a
language.

The usual model for dependence based algorithm description is the dependence
graph where nodes represent statements and edges dependencies. In order to represent
complex applications, a common extension of these graphs is the hierarchy. Array-OL
builds upon such hierarchical dependence graphs and adds a special kind of node to
represent the data-parallelism of the application: repetition nodes.

Formally, an Array-OL application is a set of components connected through ports.
The components are equivalent to mathematical functions reading data on their input
ports and writing data on their output ports. The components are of three kinds: ele-
mentary, compound and repetition. An elementary component is atomic (a black box).
A compound is a dependence graph whose nodes are components connected via their
ports. A repetition is a component expressing how a single sub-component is repeated.
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All the data exchanged between the components are arrays. These arrays are multidi-
mensional and are characterized by their shape, the number of elements on each of their
dimension. Each port is thus characterized by the shape and the type of the elements of
the array it reads from or writes to.

3.2 Tasks Parallelism

For a better understanding, in the rest of the study we will use to illustrate the Array-OL
concepts on an application that scales an high definition TV signal down to a standard
definition TV signal, called downscaler. Both signals are represented as a three dimen-
sional array; the first two dimensions represent the frame resolutions (1920 x 1080 at
the input and 720 x 480 at the output) while the third represents the flow of frames (in
time). The application’s task dependence is presented in Figure [Il The application is
constituted from two filters, the horizontal and the vertical filter.

Vertical Filter
(720, 1080, oo)[] [](720, 480, c0)

Horizontal Filter

(1920, 1080, oo)[] .
(720, 1080, o0)

Fig. 1. Downscaler application — task dependence

Each execution of a task reads one full array on its inputs and writes the full output
arrays. The graph is a dependence graph, not a data flow graph.

3.3 Data Parallelism

A data-parallel repetition of a task is specified in a repetition task. The basic hypothesis
is that all the repetitions of this repeated task are independent. They can be scheduled
in any order, even in paralle. The second one is that each instance of the repeated task
operates with sub-arrays of the inputs and outputs of the repetition. For a given input
or output, all the sub-array instances have the same shape, are composed of regularly
spaced elements and are regularly placed in the array. This hypothesis allows a compact
representation of the repetition and is coherent with the application domain of Array-
OL which describes very regular algorithms.

As these sub-arrays are conform, they are called patterns. In order to give all the
information needed to create these patterns, a tiler is associated to each array (ie each
edge). A tiler is able to build the patterns from an input array, or to store the patterns
in an output array. It describes the coordinates of the elements of the tiles from the
coordinates of the elements of the patterns. It contains the following information:

! This is why we talk of repetitions and not iterations which convey a sequential semantics.
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— F: afitting matrix.
— o: the origin of the reference pattern (for the reference repetition).
— P: apaving matrix.

The shapes of the arrays and patterns are, as in the compound description, noted on
the ports. The repetition space indicating the number of repetitions is defined itself as
an multidimensional array with a shape. Each dimension of this repetition space can be
seen as a parallel loop and the shape of the repetition space gives the bounds of the loop
indices of the nested parallel loops.

In the downscaler application, each of the two filters has a repetitive functionality, so
this means we can represent them by using repetition components. Thus the complete
representation is presented in Figure[2l

1 1
F=10 F=10 Vertical filter
0 0
(720, 120, c0)
. 8] o 8] (720, 1080, ) T 1720,480,)
0 0 . T
800 300 ) e
p=|010 P={010
001 001
0 0
Horizontal filte F = 1] F= 1]
0 0
(240, 1080, co) o .
1920, 1080,
( ) Hfilter . o=lo o=lo
L . (720, 1080, c0) @ 3
13 3
L ) 100 100
pP=|090 p=|040
001 001

Each of the filter has a repetitive functionality that is described with the tilers. For example,
the horizontal filter’s elementary component takes a window of 13 elements that slides with 8
elements on each line of each image frame and produces 3 elements.

Fig. 2. Complete specification of the downscaler application

Returning now to the Array-OL specifications, for each repetition, one needs to de-
sign the reference elements of the input and output tiles and the elements of these tiles.
The reference elements of the reference repetition are given by the origin vector, o, of
each tiler. The reference elements of the other repetitions are built relatively to this one.
Their coordinates are built as a linear combination of the vectors of the paving matrix
as follows

N4 r, 0<r< Srepetition, refr =0+ Pxr mod sﬂ”ay (1)
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where Spepeiition 15 the shape of the repetition space, P the paving matrix and S,y the
shape of the array. The elements of the tile of repetition r are built relatively to the
reference element of this tile using a linear combination of the vectors of the fitting
matrix as follows

Vi,0 <i < Spaern, € = refy + F Xi  mod Syray 2)

where Spaier 18 the shape of the pattern.

3.4 Projection onto an Execution Model

Itis a strength of Array-OL that the space-time mapping decision is separated from the
functional specification. This allows to build functional component libraries for reuse
and to carry out some architecture exploration with the least restrictions possible. Map-
ping compounds is not specially difficult. The problem comes when mapping repeti-
tions. This problem is discussed in details in [1]] where the authors study the projection
of Array-OL onto Kahn process networks [7]. The key point is that some repetitions
can be transformed to flows. In that case, the execution of the repetitions is sequential-
ized (or pipelined) and the patterns are read and written as a flow of tokens (each token
carrying a pattern).

3.5 Array-OL Transformations

A set of Array-OL code transformations has been designed to allow to adapt the appli-
cation to the execution, allowing to choose the granularity of the flows and a simple ex-
pression of the mapping by tagging each repetition by its execution mode: data-parallel
or sequential. This paper is not meant to give a complete presentation of the Array-OL
transformations; the topic is much too complex. More details can be found in the PhD
thesis of Julien Soula [9] and Philippe Dumont [3]].

A major problem for designing an execution model for Array-OL is introduced by the
so called “synchronization barriers” between the components. Such a barrier is created
by the data dependencies. A task cannot begin its execution until all its input arrays
are entirely produced. A sequential execution is, by consequence, not appropriate; the
presence of any intermediary array that contains an infinite dimension would cause
the execution to be stalled in that point. A solution could be a pipelined execution by
refactoring the application using the Array-OL transformations. Using the hierarchy, we
intend to isolate the infinite dimensions at the top hierarchical level of the application
(which will represent the data-flow), while in the lower levels we can choose a pipelined
execution.

All the Array-OLtransformations are based on a mathematical formalism that en-
sures their correctness, but which will not be presented due to limited paper size. Details
can be found in the bibliography.

Fusion This transformation basically takes two components that have at least one com-
mon array (the first component produces an array consumed by the second component)
and these two components are merged into a single compound component containing
the previous two. The result of fusion is the creation of a hierarchy level, with a com-
mon repetition and sub-repetitions on the lower level hierarchy. The components keep
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their functionality after the fusion but the difference is that the arrays that they work on
are different (parts of the original arrays). The question is how the parts of the original
arrays are chosen and why? In our implementation the fusion was designed is such a
way that the created compound component takes the smallest possible patterns from the
input arrays that can produce at least one element of each output arrays.

In Figure 5l we can see the result of the fusion on the downscaler application. We
can see that after the transformation the two initial filters are merged into a single com-
ponent which contains the initial filters that now consume different arrays, the infinite
dimension remaining at the top level.

(240, 120, o)
Fe ((1)) . (1) Vertical filter
(0
°=1, o) Vfilter
/ (14,13)| p= (1) ) (3,4)
(1920, 1580,; ) I 0 “ (720, 5%0, )
] } :
01 Horizontal filter 10
FE|10 { 0 0 F=101
00 (14 F= (1) F= (1) 00
o Hfilter (0 (0 0
0E|0 s 1) (] [] G149 0= °=lo 0=10
0 (13) ) 0
p=(! p=(!
800 {0 o 300
P=l090 P=|040
001 001

After the fusion, a hierarchy level was introduced in the application, the original filters were
merged into a single compound component that passes now just parts of the initial arrays to the
filters.

Fig. 3. Downscaler after fusion transformation

Change paving transformations can be used to change the granularity of the applica-
tions or of parts of the application by redistributing repetitions between hierarchy levels.
As a direct consequence it can be used to reduce the redundant computations (called re-
calculations) generated in some cases by the fusion. This problem can appear after the
fusion, if the first component before the fusion produced overlapping patterns. This will
cause the first sub-component after the fusion to compute multiple times the same ele-
ments of the original arrays. What we can do is reducing the amount of re-calculations
by extending the pattern of the compound component so it will include more. In the
extreme case, if we extend to the maximum the pattern on all the paving vectors which
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cause re-calculations, we may even eliminate the phenomenon. Still, this is not possi-
ble in the case where the re-calculations are present on the infinite dimension without
eliminating a major role of the fusion, that of isolating the infinite dimension on the top
level of the hierarchy.

Change paving by adding dimensions, as its name indicates, extends the pattern by
the use of an extra dimension, having the size of the change paving level. Parts of
the repetition of the top level descend a level of hierarchy as new dimensions of the
repetition spaces of sub-components. Change paving by linear growth transformation
is designed specially to reduce the re-calculations and so it can be applied only on tasks
that contain re-calculations. What this transformation does different than the previous
is to calculate a surrounding pattern and in this way the transformation can be used to
reduce the re-calculations. We extended the use of the transformation to the case where
the patterns are “glued” together, even if there are no re-calculations. It’s advantage is
that it does not introduces extra dimensions to the arrays involved in the transformation.

Tiling transformation was designed in order to allow the introduction of granularity
degree concept in an application. This concept, introduced in the context of control,
allows to delimitate different execution cycles. More details on this topic can be found
in the PhD thesis of Ouassila Labbani (chapter 7.3). A granularity degree basi-
cally defines a subset of the repetition domain that corresponds at the execution to a
controlled Array-OL component. The result of such a transformation is similar to the
loop tiling and is basically the separation in functional blocks that have as an important
characteristic the increased locality.

Collapse The fusion transformation can work only on two tasks at a time. In we want
to fusion three or more tasks we must apply the fusion multiple times and this will lead
to the creation of what we call “abyssal hierarchies”, applications that are spread on
multiple hierarchy layers. The solution is the collapse transformation, represented by a
series of maximum change paving transformations that have the effect of extending the
patterns of the compound component so it contains all the original patterns and in this
way this component can be eliminated by replacing it with its sub-components, which
will “climb” a level in the hierarchy.

By applying a certain number of transformations we can change the structure of an
Array-OL application without modifying it’s functionality. One can use these trans-
formations to refactor the application to respect various constraints (timing, hardware
mapping, memory optimization).

4 Array-OL vs. Loop Transformations

Loop transformations are most efficient on code that contains extremely regular data
treatment (perfectly-nested loops) which is exactly the domain of Array-OL.

We start with some important observations on these transformations. First, Array-OL
transformations have a major advantage over loop transformations that are usually local
optimizations while the Array-OL ones can be applied at any level of the hierarchy
thanks to the pattern based data accesses. The pattern based data accesses make the
Array-OL access structure more visible and much easier to manipulate, differently from
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the complex formulas manipulating the loop indices. There are also disadvantages with
Array-OL; the most important is introduced by the limitations of the language, one of
them being the extreme regularity. This restrains the domain of applications that can be
specified with Array-OL to a limited set.

We will not compare separately each pair of transformations, each Array-OL trans-
formations resembles in functionality with it’s homonym, but rather try to identify the
role of each transformation and its possible usage. When passing to an execution model
in Array-OL there are a set of key concepts that must be carefully analyzed. First, we
must isolate as much as possible the infinite dimension but in the same time respect the
internal constrains introduced by the data dependencies and avoid any blocking points
in the execution. All these are done by the use of the fusion that has three major effects:
it isolates the infinite dimension on the top hierarchy level, it minimizes the intermedi-
ate arrays and guaranties a non-blocking structure. As the loop fusion, they both have
the role of merging two dependent entities (Array-OL components in the first case and
loop-nest in the other) with the purpose of eliminating or at least reducing intermedi-
ate data size. An advantage of Array-OL fusion is that it automatically does the array
resize, while the loop transformation needs other transformations in order to achieve
this, like the scalar replacement or intra-array storage order optimization. The fusion
in Array-OL can be used to reach a multi-level application structure where all the infi-
nite dimensions are left on the top level that will represent the data-flow. The collapse
transformation has an important role in connection with the fusion, for avoiding the
apparition of “abyssal hierarchies” created by chaining fusions.

The change paving, resembles with the loop unrolling. They both act on redistrib-
uting the iterations between levels (hierarchy levels or nest levels). In the context of
Array-OL we can use this type of transformation for example to restructurate the appli-
cation so it respects the environment constrains.

The Array-OL tiling corresponds to the loop tiling or partitioning transformation; the
first introduces a level of hierarchy while the second introduces a nesting level to the
loop-nest. The both have the role of splitting the iteration space into functional blocks
which has a positive influence on the data locality.

We must note that in the context of Array-OL optimizations we don’t need to search
to increase the parallelism of the application, the parallelism is evident, it was one of the
starting point of Array-OL to produce a specification language where the parallelism is
fully expressed in the specifications. What we are most interested in is memory opti-
mizations (static and dynamic), but by respecting the application constrains. None the
less, transformations change the structure of an application and this implies changes to
the parallelism.

Algorithms based on loop transformations that can give the optimum solution for
memory optimizations are not practical, due to complexity issues. Most of the times
heuristics are used. In the context of Array-OL we can also use as a starting point a
heuristic, the one that involved the transformation of an application to the multi-levels
structure, which has proved extremely useful.

As said in the introduction, the Array-OL language presents some advantages. The
application defined in Array-OL is extremely regular and this regularity is contained
directly in the language; also the parallelism is evident so this is another thing that we
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don’t have to worry about. Another advantage is brought by the ODT formalism, which
guaranties the correctness of the transformations as regarding the data dependencies.

5 Conclusions

Array-OL transformations have a determinant role in the context of Array-OL. They
can be used not only for optimization but also as a tool for refactoring the application.
For now it is just an instrument in the hands of the designer but in the future, after
the needed concepts will be introduced to Array-OL, optimization algorithms using the
presented transformations will be designed and implemented. These optimizations also
depend on the execution model chosen for the Array-OL model and they will evolve in
parallel with the evolution of the execution models.
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