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Abstract—Heterogeneous multiprocessor systems, assembled
with off-the-shelf processors and augmented with repro-
grammable devices, thanks to their performance, cost effective-
ness and flexibility, have become a standard platform for embed-
ded systems. To fully exploit the computational power offered by
these systems, great care should be taken when deciding on which
processing element (mapping) and when (scheduling) executing
the program tasks. Unfortunately, both these problems are NP-
complete, and, even if they are strictly interconnected, they are
normally performed separately with exact or heuristic algorithms
to simplify the search for the optimum points.

In this paper we present an exploration algorithm based on Ant
Colony Optimization (ACO) that tries to solve the two problems
simultaneously. We propose an implementation of the algorithm
that gradually constructs feasible solution instances and searches
around them rather than exploring a structure that already
considers all the possible solutions. We introduce a two-stage
decision mechanism that simplifies the data structures but lets
the ant perform correlated choices for both the mapping and
the scheduling. We show that this algorithm provides better
and more robust solutions in less time than the Simulated
Annealing and the Tabu Search algorithms, extended to support
the combined scheduling and mapping problems. In particular,
our ACO formulation can find, on average, solutions between
64% and 55% better than Simulated Annealing and Tabu Search.

I. INTRODUCTION

Efficiency is the key-word that designers have in mind while

developing modern embedded systems. To cope with the strict

application requirements, it is nowadays common to design

these systems with several heterogeneous processing cores,

which provide high performance on specific operations, while

saving power. Beside General Purpose Processors (GPPs)

and Digital Signal Processors (DSPs) for arithmetic intensive

computations, they can also include configurable components,

like Field Programmable Gate Arrays (FPGA), which allows

a better customization for the target application.

When developing the software for these architectures, the

programmer (or a semi-automatic tool) normally divides (par-

titions) the application in several different interdependent

groups of operations (tasks), and, depending on their nature,

assigns (mapping) them to the different processing elements.

The partitioning phase identifies the parallelism among the

tasks, that can in turn potentially run on several, if not

all, processing elements of the system, but with different

performance. Some of the tasks can also be implemented in

hardware, using the configurable logic elements, occupying

some of the available area. Aim of the developer is thus to

find the best assignments to reduce the overall execution time,

while providing the maximum efficiency and exploitation of

the system and satisfying the given constraints in terms of

processing elements and configurable logic area.

This assignment process, when many tasks and processing

elements are involved, is usually complex, and requires a care-

ful exploration of all the design space. Tasks are dependent on

each other, meaning that, before executing some tasks, others

have to finish their execution to provide input data. Therefore,

the binding of a task to a resource heavily influences the

scheduling of the tasks and, viceversa, a good scheduling

could favour a better mapping of the tasks to the available

resources. Furthermore, the goodness of the assignments can

be correctly evaluated only after both mapping and scheduling

have been performed. The common approach is to perform an

initial mapping (i.e., deciding on which type of resource to

launch the tasks) and then to execute a resource constrained

scheduling to assess the quality of the overall process.

Nevertheless, both these problems are notoriously NP-

complete [1]. This means that it is possible to reach optimal

solutions through brute force search or Integer Linear Pro-

gramming (ILP) formulations only for small instances of the

problems, but it is usually preferred to provide suboptimal

solutions with faster computation times. Several heuristic

methods to solve these problems have been proposed and

they include Simulated Annealing (SA), Tabu Search (TS) and

Genetic Algorithms [2] (GA). Normally, after these iterative

search methods have been applied to find a feasible mapping,

eventually taking into account area constraints for the FPGA,

the goodness of the generated solutions is evaluated applying

classic scheduling algorithms (e.g., list based with simple

heuristics, force directed, etc.). Techniques that apply a second

pass with iterative search algorithms for the scheduling have

also been proposed [3]. Recently, Ant Colony Optimiza-

tion (ACO) [4] has emerged as an interesting technique to

solve, separately, the mapping [5] or the resource constrained

scheduling problems [6], [7]. This technique combines global

and local heuristics to allow step-by-step decisions by a group

of cooperating agents (the ants) and it seems particularly

suitable to efficiently explore the search space of this class of
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problems that can be formulated as stochastic decision making

processes, as well as the Traveling Salesman Problem (TSP)

for which this method has been introduced. Our work focuses

on the use of the ACO for the embedded system design field

but, instead of dealing only with the mapping or the scheduling

phase, it proposes a multi-modal approach to obtain a good

scheduled and mapped task partitioning with area constraints

for reconfigurable logic. The major contributions of this paper

can be summarized as follows:

• it proposes an unified algorithm, based on the ACO

technique, that simultaneously performs both the task

allocation and scheduling of a task graph on a resource

constrained, heterogeneous multiprocessor architecture

with statically configurable devices;

• it proposes an ACO implementation that performs a step-

by-step exploration of the search space, gradually con-

structing feasible solution instances, rather than exploring

a structure that comprises all the solutions, using a two-

stage decision mechanism;

• it extends two iterative techniques, SA and TS, com-

monly used to perform task mapping, to also search in

the scheduling space, and it compares them with the

proposed ACO based algorithm, proving its performance

and robustness with respect to this class of problems.

The remainder of this paper is organized as follows:

Section II defines the problem addressed, while Section III

introduces the ACO heuristic. Section IV presents some of

the related works in the area, and Section V illustrates the

proposed mapping and scheduling algorithm based on ACO.

Experimental evaluation and comparisons with SA and TS iter-

ative techniques is proposed in Section VI. Finally, Section VII

concludes the paper.

II. PROBLEM DEFINITION

Task mapping and scheduling are two important phases in

the design of multiprocessor heterogeneous embedded sys-

tems. A task is a coarse grain set of instructions with a well

defined interface which represents a part of a program. A

program can be decomposed in several interdependent tasks,

and can be represented through a Directed Acyclic Graph

(DAG), the task graph. We formally define the task graph

as G =< T, E >, where T is a set of vertices representing

the tasks and E a set of directed edges that represents the

dependencies among tasks. The relation P : T × M → N
+

associates with each task ti its performance on the processing

element mj , while the relation A : T → N+ associates the

area potentially occupied by the task ti on the reconfigurable

logic when it is mapped on the FPGA. Relations P and A can

be considered as task annotations, and can be obtained by pro-

filing the code of each task on the target processing elements

(for performance annotations) or by estimation methods (for

both performance and area annotations). In this formulation, a

task, when executed on the system, can start only when all its

predecessors have ended, runs only on a processing element

and, after starting, cannot be interrupted. Fig. 1 shows a simple

task graph with 6 nodes.

Fig. 1. A sample Task Graph. Task F must wait the termination of tasks C,
D and E before starting.

The mapping process can be seen as a relation that as-

sociates ti with the processing element mj , B : T → M ,

while the scheduling is a relation that associates each task

ti with a start time, S : T → N. A schedule is considered

feasible when: i) task ti is not started before all its immediate

predecessors have ended and ii) the resource constraints are

satisfied. There is a tight connections among scheduling and

mapping: the scheduled tasks cannot exceed the available

processing elements and the logic area on the FPGA, while

the mapping should support the scheduling, trying to expose

the maximum parallelism among the tasks.

Our approach imposes as few limitations as possible. In our

formulation, the tasks can run on a single resource, on a subset

of the resources or, potentially, on all the units available. For

the FPGA, area constraints are supported, meaning that only a

limited number of tasks can be allocated on the reconfigurable

device. It is also possible to express the constraint to run a task

on a specific resource instance. At the end of the execution,

our algorithm provides a completely scheduled task graph with

the allocation of each task to specific resource instances.

III. ANT COLONY OPTIMIZATION

The ACO methodology was originally introduced by Dorigo

et al. in the form of the Ant System [4]. It was inspired by

the observation of the behavior of ants when trying to reach

a food source. A single ant essentially moves at random,

but multiple ants can cooperatively search for the shortest

path from their colony to the food. In fact, when ants move,

they deposit a chemical substance, called pheromone, that is

used for indirect communication. Ants are motivated to follow

these trails: with high probability, random moving ants will

go through the same path of previous ants. When they follow

these trails, they deposit even more pheromones and reinforce

them. At some point, some ants will reach the food and go

back to their colony. Other ants may find other ways to the

food. However, in the same amount of time, more ants will be

able to go back and forth to the food following the shortest

path rather than moving along longer routes. Thus, on that

path, the concentration of the pheromone will grow faster,

attracting more and more ants. The pheromone also has an

evaporation factor. Therefore, as time goes by, pheromone on

less reinforced routes will slowly disappear and, at some point,

the only path with a strong trail will be the shortest one,

making almost certain for all the ants to move along it.
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ACO takes inspiration from this behaviour, launching sev-

eral agents that explore the search space trying to find valuable

solutions which, in turn, get reinforced. It adds, however,

aspects like greediness (it knows the environment and thus

can drive the ants to explore around interesting points of the

search space) and memory of the produced paths to generate

only feasible solutions. One of the first problems to which

ACO has been successfully applied is the TSP [4], for which

it gives competitive results when compared with traditional

methods.

The Ant System for the TSP normally follows these steps:

1) Initially associate each arc with a pheromone trail τij .

2) Put m ants on an initial city.

3) Each ant constructs its tour, executing a probability

choice at each step from the set of allowed cities and

memorizing the visited cities. The probability of going

from city i to j is calculated as follows:

pij =
[τij ]α ∗ [ηij ]β

∑

l∈Ni
[τil]α ∗ [ηil]β

where Ni is the set of admissible choices for the ant at

node i, η is a local heuristic that influences the choice

of the ant on the next arc to explore starting from the

current node, τ is the pheromone trail, while α and β

controls the weight of the local heuristic and the global

heuristic (pheromones).

4) The quality of the result is evaluated.

5) The pheromone trails are updated, firstly evaporating the

trails on all the arcs and then incrementing them of a

factor proportional to the goodness of the result found.

6) If goal conditions are not met, go to step 2.

The pheromones update formula is as follows:

τij = (1 − ρ) ∗ τij +
m

∑

l=l

∆τ
(l)
ij

where 0 < ρ < 1 is the evaporation rate and the deltas are

calculated as ∆τ
(l)
ij = Q/L, if the arc ij was in the solution, 0

if not, with Q as pheromone delivery rate and L representing

the cost of the result. Evaporation removes after each iteration

some pheromones on all the arcs, allowing the ants to “forget”

nodes explored and never revisited in order to not converge

early to local minimums.

Goals can be a maximum number of generations, a fixed

number of iterations for which the best results does not get

better or convergence to a sub-optimum value by all the ants.

The method originally proposed by Dorigo for pheromone

update envisages a proportional update by all the ants launched

in each iteration, at the end of the iteration itself. Several other

different ways to update the pheromones have been proposed.

Among them, we cite the elitist approach, in which only

the best results of the current iteration are reinforced along

with the overall best result, the Max-Min approach [8], that

introduces adapting boundaries to the maximum and minimum

values of pheromone trails to address possible premature

convergence, and the Ant Colony System [9], which proposes

an on-line mechanism to update the pheromone trails after

every choice of each ant.

IV. RELATED WORK

Mapping and scheduling are critical problems in the field

of embedded system design that have been both solved with

deterministic and non deterministic methods. Several ILP

formulations have appeared for both the scheduling [10] and

the mapping problems [11]. Nevertheless, these two problems

are NP-complete and the optimal solution is computationally

intractable for all but small instances. Thus, generally, opti-

mization techniques, based on heuristic and evolutionary algo-

rithms, that allow to reach suboptimal solutions in acceptable

times are used. In particular, for the Resource Constrained

Scheduling Problem (RCSP), the most common methods adopt

a list based approach [12], which uses a priority list to

determine the tasks to process first. With this approach, the

quality of the results largely depends on the priority function

used. Several techniques to obtain good priority lists have been

proposed. A widely adopted priority function is the mobility,

which assures that the most critical tasks are scheduled first,

while the ones with the highest mobility can be deferred

without increasing the overall execution time, thanks to their

higher flexibility. Many heuristic search methods have been

applied to obtain good priority functions. Among them, graph-

theoretic and computational geometry approaches [13], SA,

TS [14] and also GAs [15] have been the most successfull.

Several formulations have also been proposed for the map-

ping problem, defined as the problem to find the best hard-

ware/software system partitioning in terms of assignment of

the tasks to reconfigurable devices as hardware components or

to general purpose processors as software threads. Determin-

istic and non deterministic methods have been applied to this

problem too. Banerjee [16] et al. discussed an ILP formulation

along with an heuristic method that takes care of the placement

of the hardware tasks on the reconfigurable logic. A good

number of overviews and comparisons of iterative search

methods to solve this problem have been proposed [2]. Among

them, the most popular are considered GA [17], TS and

SA [18].

After the first formulation for the TSP, other ACO methods

have been formulated to solve many traditional NP-hard prob-

lems. ACO, applied to the scheduling problem, has been stud-

ied by researchers of both the evolutionary computation and of

the embedded system design fields. In particular, Merkle [19]

et al. devised several solutions to adapt the Ant System

techniques to the RCSP, introducing features like summation

evaluation of pheromones trails, parameters with changing val-

ues from iteration to iteration, elitist solution discarding, local

optimization strategies and bidirectional planning. Wang [7]

et al. applied, instead, the Max-Min Ant System technique to

both the resource and time constrained instruction scheduling

problem. Wang [5] et al. also evaluated ACO in relation to

the mapping problem, comparing its performance to SA and

integrating the two techniques to improve the final solution.

144



Our work takes these studies as its basis, but introduces the

ACO technique to solve both the scheduling and the mapping

problem at the same time. With respect to Merkle’s work [19],

our problem is multi-modal. The standard RCSP formulation

assumes that the type of resources requested by each project

has been already fixed, while in our formulation, each task can,

a priori, run on any of the compatible resources. Wang, instead,

deals with scheduling and mapping separately, and does not

combine the problems. In the mapping formulation, proposed

in [5] he considers reconfigurable area limitations, like us, but

extends the task graph representation in order to generate a

data structure to allow the exploration by the ants. We do not

extend it, since we allow each ant to perform a local mapping

choice when required. In the resource constrained formulation

for the instruction scheduling proposed in [7], Wang uses the

ACO algorithm as an heuristic method to obtain the priority

list for the list scheduler, while in our algorithm the ants

directly construct the solutions. Furthermore, these works are

centered around small problem instances, with no more than

350 nodes. In our formulation, each ant constructs step by step

its solution, allowing the algorithm to explore around the good

ones rather than searching solutions on a data structure that

already contains all the possible permutations. To the best of

our knowledge, this is the first formulation that tries to tackle

both the scheduling and the mapping problem at the same time

obtaining, at the end of each ant tour, a completely mapped

and scheduled solution. Performing mapping and scheduling at

the same time potentially allows to obtain much better results

than performing a search only on one dimension, or first in

one dimension and then in the other: although the search space

becomes bigger, it permits to evaluate combinations that, using

two different passes, without any feedback, can instead be

cut early at the beginning of the search. Fixing the mapping

reduces the search space for the scheduling. Viceversa, fixing

a priority for the scheduling, makes some good mappings less

effective.

V. PROPOSED ALGORITHM

In this section we present the proposed ACO based algo-

rithm. We show how it works starting with an example, and

then we give some more details on the decision and pheromone

update policies, on the complexity of the algorithm and on

the optimizations implemented to obtain faster convergence to

good solutions.

A. Example

We present the proposed algorithm with an example. Con-

sider the task graph introduced in Fig. 1. In our formulation,

each of the six tasks of the task graph can potentially be

mapped on all the available resources. Each task is annotated

with an estimation of its performance on each resource type.

The estimation can be obtained with simulation, static or

dynamic profiling or direct execution on the target processing

element. Table I shows some possible annotations of a case

in which each task can run on a DSP, a GPP and FPGA. We

use simple numbers to allow a better understanding of the

Task DSP Time GPP Time FPGA Time FPGA Area
A 2 4 1 3
B 1 3 2 4
C 4 3 2 4
D 2 5 3 5
E 5 3 7 3
F 4 5 3 2

TABLE I
DISTRIBUTION OF THE EXECUTION TIMES AND AREA OCCUPATION ON

THE DIFFERENT RESOURCES FOR THE EXAMPLE TASK GRAPH. THE TOTAL

AVAILABLE AREA ON THE FPGA FOR THIS EXAMPLE IS 10.

algorithm. Performance is expressed in clock cycles, FPGA

area in terms of configurable logic bocks

For the FPGA, we also take in account the logic area

occupied by the hardware implementation of each task. Even

this value can be obtained with appropriate metrics. The

reconfigurable logic has a different behaviour with respect to

the other processing elements. In fact, it can allocate as many

tasks as allowed by the available space and can launch them

all in parallel if necessary. We consider only static allocation

of tasks on the FPGA: when mapped, they cannot be removed,

thus our model does not allow partial dynamic reconfiguration.

The actions of the ants, similarly to [19] are performed

inside a Serial schedule Generation Scheme (SGS). This

scheme constructs a complete schedule in N steps, where

N is the number of tasks, selecting at each step a task

with fixed resource requirements following a greedy approach.

Using SGS, feasible solutions are always obtained, and it is

known that, with appropriate choices, it can always reach

the optimal solution for the RCSP [20]. The precedence

constraints induced with the directed task graph are managed

generating at each step a list of candidate nodes. From this

candidates list, the SGS selects the effective node to schedule

and map in the current step through a heuristic, which can

for example be a priority list, similarly to a list scheduler.

Like [19] we consider each step of the SGS as a decision

point for the ants.

Returning to our example, an ant starts crawling to task A. A

standard SGS would just select the task, check the pre-assigned

resource type and schedule the task as soon as a resource of

that type is available (i.e., all previously selected tasks running

on the same unit have ended). For task A, it would just allocate

it at time 0 on its target resource. In our formulation, instead,

at this point an ant already has three different possibilities as

step i) in Fig. 2 shows: it can select A on the DSP, on the

GPP or on the FPGA. Each decision has its probability, and

a probabilistic choice is made. Suppose the ant selects the

instance task A on FPGA. Thus, A is mapped on the FPGA

and the SGS scheduler places it at time 0 on that resource.

Consequentely B and C become available for mapping and

scheduling. Both B and C can run on the three resources, so

the ant now has 6 possible choices, that represent the chance

of scheduling a node on a unit in the current scheduling step.

Suppose that, in this step, task B is chosen, again, on the

FPGA. Thus, B is scheduled just after A, at time 1, on the
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Fig. 2. The six steps performed by an ant while scheduling our example
task graph

FPGA, as shown in step ii) of Fig. 2. Now also D and E

become admissible candidates along with C for the next SGS

step. However, the total area on the FPGA in our example

is 10. Seven units of space have already been allocated, thus

the possible choices for the ant at this stage are: C, D, E on

DSP and GPP, but only E on FPGA. So the ant has to choose

among 7 possibilities instead of 9, as reported in step iii) of

Fig. 2. Probabilities are dynamically generated at each step, as

proposed in the original formulation of the Ant System for the

TSP. But, in this case, all the solutions obtained at the end of

the ant tour are feasible. The ant makes again its probabilistic

choice, and selects task C on the DSP. C can start at time

1, completely in parallel with task B, since the only needed

precondition to obtain a feasible schedule is to start B after

task A has ended. The ant could have chosen task D or E, but

the SGS would have scheduled them after the end of task C

to respect the dependencies. Furthermore, if the same unit is

chosen for tasks that can potentially run in parallel, the SGS

would take care of the resource requirements, scheduling the

new task as soon as the target unit is available. The next step

(iv) for the ant is to schedule and map task D or E. Since

only one of the three predecessors of F has been scheduled at

the current step, F is not added yet to the candidates list. E is

chosen, mapped and scheduled at time 5 on the GPP. Then,

only D remains in the candidates list with the probabilities to

run DSP and GPP. Remember that the FPGA has already 7

space units allocated so far, thus D cannot run on the FPGA in

the current schedule. D is selected on the DSP and scheduled

at time 5, so finally also F can be scheduled and mapped. F

has an area occupation of 2, so it can potentially run also on

the FPGA. It is then scheduled on it at time 8, just after its

last predecessor, E, ends. The complete schedule generated by

this ant is reported in step vi) of Fig. 2.

B. Probability decisions and pheromone update

Fig. 3 shows the decision graph, only for the scheduling

part, for our example. It is easy to see that, only for the

scheduling decisions, the size of this structure is twice the size

of our initial task graph. Potentially, considering a task graph

with N nodes, with a first task that spawns all the possible

children (fork), and a final task that acts as a join node, it can

grow up to N(N − 2) vertices. If, for each task, M different

target units are possible, it is necessary to explore a graph of

N(N − 2)M vertices. Our ACO formulation explores only

promising parts of this graph, reinforcing the good triplets

<task, resource, step of selection by the SGS> chosen in the

best solutions.

Following these concepts, we initially devised a mechanism

that unifies both mapping and scheduling in a single decision

formula by the ants. At each step i, we calculate the probability

to select task t on the unit m as:

pitm =
[τitm]α ∗ [ηitm]β

∑

l∈Ntm
[τil]α ∗ [ηil]β

η is a local heuristic and it is calculated everytime a

probability is generated. Different values can be used, like

mobility, estimation of the critical path, latest finishing times

of predecessors nodes, or the earliest starting time of a task

(the maximum among the latest finishing time of its prede-

cessors and the availability of the target resource), possibly

adding the performance of the task on the target unit in order

to characterize the mapping.

τ is the global heuristic, which corresponds to the

pheromones of the ants and which is updated in each iteration

of the algorithm, if the ants included that choice in their

solutions. ACO stores these reinforcements in a pheromone

matrix. This means that a value is saved for each triplet <task,

target resource, scheduling step>, generating a structure as big

Fig. 3. The decision graph for the scheduling selection on which ants crawl
while constructing a solution. Only part of it is explored by a each ant.

146



as the completely unrolled decision graph. In the multi-modal

case, many of these locations can be considered equivalent:

if task A and B run in parallel, and are mapped on different,

free resources, changing the order in which these two nodes are

considered by the scheduler does not change the final outcome.

Thus, it can make the reinforcements less effective and the

convergence to the optimum slower.

With these considerations in mind, we devised a two-stage

decision process. At each scheduling step, 2 probabilities are

calculated:

ps
it =

[τs
it]

αs ∗ [ηs
it]

βs

∑

l∈Ni
[τs

il]α
s ∗ [ηs

il]β
s

which each ant uses to determine the task t to schedule at step

i, and:

pm
tm =

[τm
tm]α

m ∗ [ηm
tm]β

m

∑

l∈Nt
[τm

tl ]αm ∗ [ηm
tl ]βm

which is calculated after the task to schedule has been selected,

and expresses the probability that the selected task t will be

mapped on the resource m. If a task cannot be allocated on

the FPGA for lack of available area, that mapping probability

is not generated. The final result of the decision process

is still the mapped task to schedule in the next scheduling

step. The correlation among scheduling and mapping is main-

tained. However now the process is much more controllable.

Scheduling is performed by computing the probabilities on a

pheromone matrix, Ts of N ∗ N elements, representing the

possibility to select a node in the current step. Mapping is

based on another matrix, T
m, of size NM which contains

the reinforcements for mapping a task on a resource. Total

dimensions are now NN + NM . For each stage of the

decision process, a specific, more effective, local heuristic

can be implemented. Moreover, different evaporation rates and

parameters, to fix scheduling before mapping or viceversa, can

be used.

We apply the pheromone update following an elitist ap-

proach: only the best solution of an iteration adds pheromone

deltas to the mapping and scheduling choices, along with

the current overall best solution. When an ant ends its tour,

the task graph is completely mapped and scheduled, and its

overall execution time is obtained. This information is then

used to proportionally reinforce the elements chosen in the

best solutions by the ants. The update formula, executed for

the best solution of each iteration and for the current overall

best solution is as follows:

τs
it = (1−ρs)∗ τs

it +ρs ∗ 1
L

for the scheduling pheromones,

and τm
tm = (1− ρm) ∗ τm

tm + ρs ∗ 1
L

for the mapping. L is the

total length of the scheduled and mapped task graph.

C. Other Optimizations

With this two-stage mechanism, all the solutions devised by

Merkle in [19] to favour the exploration and to speed up the

convergence to good solutions for the RCSP can be applied.

In particular, we adopt the summation evaluation for the

pheromone trails (only for the scheduling), the possibility to

forget the elitist best solution and the 2-opt local optimization.

Summation evaluation is a pheromone evaluation rule origi-

nally introduced for the Total Tardiness Problem [21] that takes

into account the relative influence of pheromones values cor-

responding to earlier decision. It can help the scheduler since

with the SGS scheme several permutations in the selection of

the tasks to schedule are possible. Summation evaluation is

determined using:

ps
it =

[ηs
it]

βs ∗ [
∑i

k=1 γi−kτs
kt]

αs

∑

l∈Ni
[ηs

il]β
s ∗ [

∑i

k=1 γi−kτs
kl]α

s

It can be combined with direct evaluation by simply replac-

ing the τs
it of the direct evaluation formula with the new:

τ ′s
it = cxiτ

s
it + (1 − c)yi

i
∑

k=1

γi−kτs
kt

where xi

∑

l∈Ni

∑i

k=1 γi−kτs
kl and y =

∑

l∈Ni
τs
il are

factors to adjust the relative influence of direct and summation

evaluation. For c = 1 pure direct evaluation is obtained, while

for c = 0 pure summation evaluation is used.

Changing the current best solution, with low probability,

allows the algorithm not to converge too early. If the best

solution has been stable for many generations it gets constantly

reinforced by the elitist pheromone update mechanism. If this

solution has no other interesting points in its neighborhood,

the search will slowly concentrate around its region, since the

evaporation rate will make the elements of this solution the

most reinforced ones. The algorithm would thus converge to

this local optimum cutting out the possibility to find better

solutions in different regions.

Finally, local optimization strategies help the ants to perform

faster searches in the neighborhood of good solutions [22].

We adopt a 2-opt strategy that, with different probabilities,

can swap or the order in which two tasks get selected for the

scheduling, or the mapping of a task. This strategy is applied to

the best solution at the end of each iteration. When swapping

the order in which tasks are selected, we verify if the new

scheduling is feasible; when changing the mapping of a task,

we recalculate the total execution time with the new resource

assignments. These simple swaps are likely to be tested by

the ants, so our optimization strategy simply makes the search

around the best solution faster.

VI. EVALUATION

In this section we evaluate our algorithm by applying it to

several test cases. We begin presenting the experimental setup

and the algorithms used for comparison, and we then discuss

the results obtained.

A. Experimental Setup

To evaluate our ACO algorithm, we randomly generated

several realistic task graphs using Task Graph For Free [23],

with 100, 200, 250, 500, 750 and 1000 nodes (with ±5 vari-

ance). For the 200 and 500 instances, we generated multiple

solutions with different degrees of dependencies. An XML
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architecture description file provides to our tool a target archi-

tecture composed of 4 heterogeneous processing elements: a

DSP, an ARM GPP, a PowerPC GPP, and a FPGA. Each task

was generated with different performance for each processing

element (e.g., a performance of 1600± 1500 clock cycles for

ARM) and an area of 5000±2000 logic cells for execution on

FPGA. FPGA total available area was configured to 100, 000
logic cells. We implemented two other standard search algo-

rithms, SA and TS, which are widely used for task mapping,

and we adapted them to deal with multiple resources and

with the scheduling problem. Both TS and SA are adaptations

from the Neighborhood Search (NS), a hill climbing algorithm.

Unlike NS, SA can accept inferior solutions during its search

according to a probability function. This probability starts

high, and gradually drops as the temperature is reduced. When

temperature drops below a certain threshold, the algorithm

ends. Several cooling schedules can be used, among them

the most common are the geometric schedule and the Lundy

and Mees schedule. TS, instead, exploits a search history as a

condition for the next moves. When generating new solutions,

TS checks its short term memory to avoid searching the same

neighborhood (tabu status). After some time, however, the tabu

status will be released and these solutions will become eligible

again. The use of tabu restrictions can however sometimes stop

the search in promising areas, thus it is common to introduce

aspiration criteria, that override the tabu state and permit the

inclusion of good solutions in the allowed set. A common

criterion is to not respect the tabu status if a move permits to

obtain a solution better than the best so far.

In our formulations for SA and TS, each solution is com-

posed of two elements: a map in which each task is associated

with a target unit, and a priority list which is given to the

SGS scheduler for the selection of the task to schedule. The

generation of a neighbor coincides with the random change of

the mapping of a task or the random swap of the priority

among two tasks. The starting scheduling priority list is

based on the topological order. Tasks are scheduled by the

SGS verifying precedence and resource constraints and then

scheduling priority, so feasible schedules are always obtained.

B. Experimental Results

We executed 30 runs on each task graphs produced by

TGFF and averaged the results. The following parameters

were used to conduct the simulations. For the ACO algorithm,

αs = αm = βs = βm = 1, were used along with different

evaporation rates for the scheduling (ρs = 0.9) and the

mapping (ρm = 0.98). This choice is motivated by the fact

that scheduling is a harder problem and a faster evaporation

rate helps the ants to fix at least a local optimum sooner. As

local heuristics, for the scheduling decision we adopted the

mobility of the tasks (we perform ALAP and ASAP scheduling

to obtain an average value without taking into consideration

the resource compatibility of the tasks), while for the mapping

decision we used the inverse of the sum of the maximum time

between the target resource availability and the finishing time

of the lastest predecessor of the task with the execution time of

the task on the target resource. For the FPGA, however, we just

take into account the finishing time of the latest predecessor

of the task, since if the task can be mapped on it (i.e., there is

space available), the resource is always available. 5 ants for a

maximum of 2000 iterations were used. For the SA algorithm,

we used a geometric cooling schedule, Tnew = αTold, with

α = 0.99. Initial temperature Tstart was set to 250, while

Tfinish was 0.25. For TS, we generated 10 neighbors for 1000

iterations with a tabu list composed of 10 sets of solutions

each. The tabu list acts as a FIFO queue: a set of freshly

generated neighbors, not present in previous sets, is inserted

in each iteration. The older sets have a lower tabu degree so,

if following the aspiration criterion a result is chosen from the

tabu list, a choice in the sets coming from older iterations is

preferred.

Table II shows, for each of the three search algorithms, the

average best solutions obtained in mapping and scheduling the

annotated tasks graphs, the standard deviation from the average

best solutions (σ) and the execution time of the algorithm until

convergence or reaching of the maximum number of allowed

iterations. The solutions are calculated as the total number of

clock cycles required to execute the mapped and scheduled

task graphs. Average of the best solutions found by SA and

TS are presented as percentage difference from the average

best solutions found by ACO. Standard deviation is represented

as percentage variation from the average best solutions found

by each search algorithm. The values show that our ACO

formulation, when compared with other hill climbing derived

search algorithms that try to solve the combined mapping

and scheduling problems, globally performs better, faster and

appears to be more robust. With 100 nodes, SA almost reaches

the quality of the results obtained with ACO, even if with a

slightly higher variance and more than double execution time.

We do not report values for task graphs smaller than 100

nodes, since with those sizes it is still possible to obtain good

results with an exhaustive search and SA, with repeated small

local modifications, can obtain results of the same quality of

ACO. With task graph instances from 100 to 250 nodes, SA

generally performs better than TS but, with a much higher

standard deviation, appears to be less robust. When the task

graphs grow to 500 nodes and more, however, SA is no more

able to manage the search in the combined scheduling and

mapping space. The temperature starts to diverge, and the

search concludes very soon, as the execution times of the

algorithm show. As a consequence, the quality of the best

solutions found gets much worse with respect to both ACO

and TS. Generally, TS is more robust than SA, but cannot

reach the same robustness of ACO. ACO, thanks to the use

of two heuristics, local and global, is more easily driven to

good results from the beginning of the search. Since TS does

not implement a reward mechanism for good solutions, it

requires higher execution time (almost double) to find its best

solutions but, thanks to the tabu list, it can limit its search

only to promising neighborhoods. On our test cases the ACO

formulation for mapping and scheduling can find solutions

that, in average, are respectively 64% and 55% better with
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Tasks ACO SA TS
Av. Best σ Time (s) diff. σ Time (s) diff. σ Time (s)

100 51.403 ±1,54% 14,45 +1,31% ± 6,67% 33,43 +64,33% ±8,10% 40,38
200-a 107.230 ±1,22% 32,92 +36,27% ±32,17% 109,07 +52,55% ±5,85% 112,73
200-b 60.080 ±1,70% 57,01 +23,19% ±34,54% 122,72 +54,19% ±4,96% 124,70
200-c 65.876 ±2,47% 51,81 +59,99% ±28,86% 48,56 +56,57% ±5,89% 112,40
250 142.440 ±0,84% 49,93 +38,92% ±28,09% 149,78 +57,03% ±5,93% 170,75

500-a 300.938 ±1,14% 269,19 +82,30% ±16,78% 119,44 +70,36% ±8,07% 501,86
500-b 163.694 ±1,41% 207,91 +84,86% ±19,30% 225,08 +62,92% ±6,78% 494,63
500-c 181.315 ±1,60% 253,32 +103,38% ± 9,99% 72,98 +66,72% ±7,36% 446,01
750 445.936 ±1,65% 520,20 +102,17% ± 9,38% 220,02 +80,98% ±6,24% 897,79
1000 617.912 ±2,63% 820,39 +105,33% ± 4,89% 305,29 +84,95% ±6,26% 1467,35

TABLE II
COMPARISON AMONG THE SEARCH METHODS APPLIED TO SOLVE THE COMBINED SCHEDULING AND MAPPING PROBLEM. THE AVERAGE BEST

SOLUTIONS FOUND BY SA AND TS ARE NORMALIZED TO THE AVERAGE BEST RESULTS FOUND BY THE ACO ALGORITHM.

respect to SA and TS.

VII. CONCLUSIONS

This paper presented the details of a novel formulation

for an ACO search algorithm targeted to solve the combined

mapping and resource constrained scheduling problem. The

algorithm also supports reconfigurable logic and deals with

area limitations when allocating tasks on FPGA. Compared to

other ACO formulations, this is the first approach that tries to

solve, at the same time, the two NP-hard problems together.

The implementation of a two-stage decision mechanism allows

a correlated decision on the scheduling and the mapping by

the same ant, simplifying the pheromone data structures but

not limiting the search space. We demonstrate that our for-

mulation, compared to SA and TS search algorithms, adapted

to deal with both mapping and scheduling at the same time,

performs better, faster and more robustly. Overall, it can obtain

solutions, respectively, 64% and 55% better than these two

hill climbing derived search algorithms. Future works will

focus on extending the algorithm to support the concept of

partial dynamic reconfigurability, which allows the reuse of

the FPGA resources but requires to take into account some

new overheads and some new constraints in the placing of the

tasks on the programmable logic.
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