
Interface Overheads in Embedded Multimedia Software

Tero Rintaluoma1, Olli Silven2, and Juuso Raekallio1

1 Hantro Products Oy, Oulu, Finland
{Tero.Rintaluoma, Juuso.Raekallio}@hantro.com

2 Department of Electrical and Information Engineering, University of Oulu, Finland
Olli.Silven@ee.oulu.fi

Abstract. The multimedia capabilities in battery powered mobile communica-
tion devices should be provided at high energy efficiency. Consequently, the
hardware is usually implemented using low-power technology and the hardware
architectures are optimized for embedded computing. Software architectures, on
the other hand, are not embedded system specific, but closely resemble each other
for any computing device. The popular architectural principle, software layering,
is responsible for much of the overheads, and explains the stagnation of active
usage times of mobile devices. In this paper, we consider the observed devel-
opments against the needs of multimedia applications in mobile communication
devices and quantify the overheads in reference implementations.

1 Introduction

Current high-end mobile communication devices integrate wireless wide band data
modems, video cameras, net browsers, and phones into small software controlled pack-
ages. The small size of the devices is a design constraint as the sustained heat dissipa-
tion should be kept low, and long untethered active usage times should be provided [1].
Their software systems must satisfy a multitude of requirements, resulting in a complex
software solution that can only be implemented via concerted action of experts.

To facilitate this task most mobile communication device manufacturers have created
common platforms for their product families and define application programming in-
terfaces that remain the same across products, regardless of system enhancements and
changes in hardware/software partitioning, including the number of processors used.
Obviously, the software architectures and the components used need to be generic and
reusable, but it is at the cost of efficiency. Consequently, middleware is widely applied
in these systems as a key challenge is to enable uncomplicated integration of hardware
and software components to the defined platform.

An exhibit of the undesired side-effects of this development is the stagnation of the
talk-times of the mobile phones to around the 3h level, although the basic application
has not changed in an essential manner [2]. The reasons have been traced to increased
software architecture and interface overheads. In multimedia applications the overheads
can be expected to be even more significant due to the need to support numerous stan-
dards, such as JPEG, H.264, MPEG-4 and VC-1, in the same execution environment.
To provide control over these alternatives, more software layers are needed on top of
them, adding to the number of instructions to be executed. The number of instructions
executed matters, because the relative energy per instruction of embedded processor

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 5–14, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



6 T. Rintaluoma, O. Silven, and J. Raekallio

Table 1. Energy efficiencies and silicon areas of ARM processors [3]

Processor Max. clock Power consumption Silicon area
frequency (MHz) (mW/MHz) (mm2)

ARM7 (720T) 100 0.2 2.4
ARM9 (926EJ-S) 266 0.45 4.5
ARM10 (1022E) 325 0.6 6.9
ARM11 (1136J-S) 550 0.8 5.55

Table 2. Cycle and instruction counts of software based MPEG-4 decoders end encoders (VGA
30frames/s, 512kbit/s)

Processor Core/Bus CLK decoder encoder
MIPS Mcycles/s MIPS Mcycles/s

ARM7 (720T) 2/1 129,7 303.9 646,8 1446,3
ARM9 (926EJ-S) 2/1 129,2 211,9 638,2 948,5
ARM10 (1022E) 3/1 129,2 151,5 638,2 722,9
ARM11 (1136J-S) 3/1 99,2 147,3 570,6 740,1

architectures has grown during the last few years. Table 1 shows the characteristics of
ARM processors implemented using a 130nm CMOS process. Obviously, the advances
at silicon level have been swallowed by the solutions that enable higher clock rates.

In Table 2 we illuminate the impact of architectural improvements at application level
by comparing the instruction and cycle counts of software based MPEG-4 decoders. The
results come from simulations made using the RVDS 2.2 tool [4] and assuming 0-wait-
state memory accesses. The results for ARM11 are not completely cycle accurate. We
notice that the number of instructions to be fetched and executed is slightly reduced be-
tween ARM7 and ARM10, indicating moderate instruction set improvements. Clearly,
the real performance increases have come from higher clock rates.

Consequently, a multiprocessor based on lower performance processors could be
more energy efficient than a single processor solution. However, larger silicon area
adds to the cost, and the accompanied increasing leakage currents add to static energy
consumption. We may also ask, whether a multiprocessor solution with middleware is
really more energy efficient than a conceptually simpler single processor system.

Multitasking, APIs and middleware have big impacts on system performance due
to cache effects and the execution of instructions needed by the interface mechanisms.
Based on overhead measurements by Mogul and Borg [5] in 1991 and Sebek [6] in 2002
the context switch latencies appear to have remained the same for more than a decade
despite processors becoming much faster. This is explained by the low cache hit ratios
during the context switches.

Park et al (2004) measured the operating system effects on the performance of a
MPEG-4 codec run as a single task on an ARM926 processor with embedded Linux.
With this operating system the encoder run 20% and the decoder 27% slower [7]. Again,
the cache effects were pinpointed as the key reason for the slowdown. Using a Linux
platform, Verhoeven et al (2001) found that the performance of different middleware
solutions varied between 260 and 7500 calls per second [8].



Interface Overheads in Embedded Multimedia Software 7

Based on our findings presented in the following, middleware layers in embedded
system software may increase the overheads in a very significant manner. A contribut-
ing factor is the constantly increasing number of abstraction layers between software
platform generations. As a result, monolithic hardware accelerators even in computing
intensive multimedia processing are very attractive due to their low internal overheads.

2 Mobile Video Codecs and System Platforms

Typical mobile video codecs are currently built to adhere to MPEG-4 and H.264 stan-
dards. Both encoders and decoders consist of 10-20 algorithms that are in total invoked
around 1-2 million times each second for a VGA sequence, making the overheads of
the invocation mechanisms important, regardless of whether the implementation is in
the software or hardware.

Table 3 shows the typical overheads of interface mechanisms as ARM11 proces-
sor cycles on a Symbian operating system. Due to the interrupt latency it is obvious,
why the commercially available implementations are either pure software or monolithic
hardware accelerators, that interrupt the control processor, for example, once for each
frame. Fine grained hardware accelerators would be an inefficient approach due to the
high software overheads from interrupt based hardware/software interfacing. Middle-
ware as an interfacing mechanism must be exploited sparingly, limiting its use to rare
long latency services. In general, the total architectural overhead costs are unknown and
hidden in the application performance.

Table 3. Typical software interface costs in an embedded system environment (Symbian 9)

Mechanism Overhead/cycles
Procedure call 3-7
System call (user-kernel) 1000-2500
Interrupt latency 300-600
Context switch 400
Middleware 60000

2.1 MPEG-4 Software Decoder

Figure 1 shows the rough organization of a software based MPEG-4 decoder [9] that
consists of layers that each provide decoding functions for the upper layer. This is the
structure designed already into the standards. The sequence layer is executed once for
each frame or video packet, and extracts information on the employed coding tools and
parameters from the input stream. The macro-block layer in turn controls the block
layer decoding functions that have been designed to ensure the locality of addressing.
For a VGA bit stream, the macro-block layer is invoked at most 1200 times per frame,
while the block layer is run at most 7200 times.

Table 4 demonstrates the costs of software interfaces, when the APIs enabling
reusability of functionalities are placed on the sequence, macroblock and block lay-
ers, and the assumed call overhead is 7 cycles. The figures do not contain the costs of



8 T. Rintaluoma, O. Silven, and J. Raekallio

 

SEQUENCE LAYER 

Short Video
Headers

 
 

Video Packet
Headers

 
 

VOP
Headers

 
 

Stream
Headers

 
 

MACROBLOCK LAYER 

MV
 

CBPY
 

MCBPC
 

DC Coeff.
 

API and CONTROL LAYER 

API
 

Control
 

BLOCK LAYER 

VLC
 Motion

Compensation
 

 

AC/DC
Prediction

 
 IDCT

 

Fig. 1. Layered software architecture of a MPEG-4 video decoder

Table 4. The internal overhead share and energy costs of an MPEG-4 decoder with three API
layer options (VGA 30 frames/s, 512kb/s, ARM926EJ-S implemented at 130nm CMOS)

APIs Overhead Energy consumption
(cycles/s / ∼ MHz) (mW)

Sequence layer only 1806 / ∼ 0 0
Sequence and macroblock layers 2671599 / ∼ 2.7 1.2
Sequence, macroblock, and block layers 11376267 / ∼ 11.4 5.1

any functionality in the layers, and the experiments have been run without an operating
system for maximum efficiency.

Based on the above, the internal overheads of the decoder on the ARM926 are about
5.4% of the total decoder cycles given in Table 2. Energywise they cost about the same
as a hardware implementation of the MPEG-4 decoder using the same silicon tech-
nology. The control code in the sequence layer consumes additionally about 1.5 MHz,
while the share of control load elsewhere in the code is difficult to quantify.

The MPEG-4 software encoder and decoder codes do not fit in typical 16-32 kbyte
instruction caches. With an operating system, based on Park et al. [7], we should reserve
at least 20% of the processor cycles to cache related overheads alone.

2.2 MPEG-4 Hardware Decoder

The monolithic hardware decoder API is almost identical to the above software decoder
implementation [10]. Internally only a part of the sequence layer is implemented in the
software and already the bit-oriented stream parsing is in the hardware for the sake of
efficiency. The hardware interrupts the CPU after decoding each frame, on average 30
times per second. The sequence layer control software requires about 1 MHz, which is
somewhat less than with the software implementation ( 1.5MHz). The internal organi-
zation of the accelerator is again as instructed by the MPEG-4 standard.



Interface Overheads in Embedded Multimedia Software 9

2.3 Multimedia Software Frameworks

Mobile multimedia software frameworks are defined software architectures, including
APIs and middleware, intended to standardize the integration of software and hard-
ware based video coding solutions into embedded devices. In addition, the goal is to
provide mechanisms that enable building multimedia applications that are portable be-
tween platform generations.

The Symbian Multimedia Framework (MMF, Figure 2) is a multithreaded approach
for handling multimedia data, and provides audio and video streaming functionalities.
Regardless of whether the codecs are implemented in software or hardware, they are in-
terfaced as plugins to the Multimedia Device Framework (MDF). With actual hardware
codecs the plugins hide the vendor specific device drivers.

MDF with plugins is middleware that can be used to hide the underlying possible dis-
tributed implementation, for example, a decoder plugin may hide a decoder running on
a Texas Instruments DSP processor behind an XDAIS interface. The codec vendors im-
plement the MDF plugins with specified interfaces, and the MMF controller plugins that
take care of synchronization between audio and video [11], for example. The application
builders use the Client API that handles requests such as record, play,pause. At minimum,
these activations of requests go through five software interface layers before reaching the
codec. The performance depends greatly on the vendor provided controller plugins.

Symbian MMF Client API

MMF Controller Framework

Multimedia Device Framework

MDF plugins for devices

Devices

User Application

Audio Interface Video Interface
Tone Player 

Interface
Audio Streaming 

Interface

Audio Controller 
Plugin

Video Controller 
Plugin

DevVideoPlay DevVideoRecord DevSound

Post Processor 
Plugin

Decoder Plugin
Pre Processor 

Plugin
Encoder Plugin

Post Processor 
Device Driver

Decoder Device 
Driver

Pre Processor 
Device Driver

Encoder Device 
Driver

Fig. 2. Symbian Multimedia Framework



10 T. Rintaluoma, O. Silven, and J. Raekallio

Table 5. The costs of multimedia APIs

Decoder software interfaces
Proprietary API Symbian MMF Difference

Total cycles 220890240 225165845 2.14 MHz
D-cache misses 1599992 1633425 33433
I-cache misses 250821 322635 71813
D-cache hit ratio 94.7% 94.6% 0.1%
I-cache hit ratio 99.7% 99.6% 0.1%

In the Symbian operating system version 7 of 2003 the MDF was the whole frame-
work, and that increased with two new abstraction layers, Client API and Controller
Framework, in version 9 released in 2005. We are probably safe assuming additional
layers in the future to support more versatile multimedia applications, based, for exam-
ple, on the emerging MPEG-21 standard.

The proprietary solutions from mobile video codec manufacturers approach the
portability issue from a different angle. For instance, in [10] thin software wrapper
layers are used to facilitate porting the hardware and software codecs to the multimedia
engines that provides, for example, video recording and playback functionalities in a
tightly integrated manner. Table 5 compares the costs of accessing the video decoder
functionality directly via a proprietary API, and through the Symbian MDF level. These
costs are approximately the same for both software and hardware decoders. In power
consumption the difference between the multimedia frameworks would be around 1mW
on the ARM926 processor of Table 1.

The above measurements were made by running an MPEG-4 software decoder with-
out display post-processing and audio for a QVGA sequence (320x240 pixels,
30 frames/s). The experiments were made on an actual ARM11 platform without SIMD
optimizations and with a system supporting a single video coding standard. With more
codecs the overheads of using any of them are slightly higher, especially when middle-
ware interfaces are employed.

The results also provide a ballpark estimate on operating system and memory related
overheads. The decoding of a QVGA stream requires around 110MHz, while 0-wait-
state simulations predict half of that.

3 Energy Efficiency

To understand the role of the software interfaces in the energy efficiency of multimedia,
it is necessary to consider the characteristics of whole implementations. For this purpose
we use commercial hardware and software implementations of MPEG-4 and H.264
VGA video codecs [12]. Table 6 shows the estimated power consumptions of hardware
based codecs with their necessary control software ( 1MHz in all cases) on a proprietary
API. The applications were run on an ARM9 processor, and a 130 nm low power 1V
CMOS process is used for all hardware.

Due to the disparity between the algorithmic and computational complexities of
H.264 and MPEG-4 codecs, their monolithic accelerators differ significantly by gate



Interface Overheads in Embedded Multimedia Software 11

Table 6. Gate counts and estimated power needs of 30 frames/s hardware codecs

MPEG-4 H.264
kGates Power (mW) kGates Power (mW)

Decoder 161 5.6 373 24.2
Encoder 170 9.6 491 33.4

Table 7. Power consumption estimates (mW) for software based MPEG-4 and H.264 decoders

MPEG-4 H.264
ARM7 (720T) 64 140
ARM9 (926EJ-S) 96 232
ARM10 (1022E) 92 232
ARM11 (1136J-S) 118 348

counts and required silicon area. The above H.264 codec also supports MPEG-4 as that
adds only a few percentage points to the total gate count. The hardware shares of the
power consumption are almost independent of the bit rate that is an essential difference
to software implementations.

Table 7 shows the approximate power consumptions for architecture optimized soft-
ware implementations of MPEG-4 and H.264 decoders. The figures have been deter-
mined for 30 frames/s VGA 512kbit/s stream and the decoders are the only tasks being
run on ARM processors implemented using a 1V low power 130nm CMOS process.
The costs of system software interfaces and post-processing the video for display are
not included. Based on these results, multiprocessor solutions can indeed provide en-
ergy efficiency benefits.

The Symbian MDF supports multiprocessing and adds approximately 1mW to the
decoder power consumptions. This is not significant except with the MPEG-4 hardware
decoder ( 18%). We also observe that the power consumption of the ARM11 implemen-
tation of the software decoder is roughly 20% more than with the ARM9, which may
not justify the added complexity of a multiprocessor system.

Figure 3 compares the findings for both software and hardware decoders in terms of
normalized silicon areas (Mpixels/s/mm2) and power efficiencies (Mpixels/s/W) of the

 

1

2

3

 

 
 

100

Area
Efficiency
Mpixels/s/mm2

Energy
Efficiency
Mpixels/s/W200 300 400 ...

MPEG-4 SW Decoder

MPEG-4 HW Decoder

1400 1600 1800

H.264 SW Decoder

H.264 HW Decoder

Fig. 3. Area and energy efficiencies of video decoder implementations



12 T. Rintaluoma, O. Silven, and J. Raekallio

MPEG-4 and H.264 implementations. The gap between respective software and hard-
ware implementations is striking, and there are no implementation options in between.

Returning to Table 4 that itemized the software function interface costs, we can
estimate that an interrupt driven macroblock accelerator implementation would need
around 50mW for software interfacing alone with an ARM926 (130nm CMOS). This
eliminates most of the potential energy gains from hardware acceleration, and is not an
attractive option.

4 Directions for Development

With an efficient software/hardware interfacing mechanism the energy overhead of fine
grained hardware acceleration should not exceed that of a pure software implementa-
tion. We estimate that the lower bound power consumption (again 130nm CMOS and
ARM926) for such a decoder would consist of 5.1mW from software interfaces and 5.6
mW from hardware accelerators and control software, totalling 10.7mW. Software im-
plementation defines a 96mW upper bound, so the energy efficiency should fall midway
between hardware and software implementations in Figure 3.

A model for the energy efficient approach can be obtained from periodically sched-
uled embedded real-time systems that run their tasks in a fixed order, and use hardware
accelerators without interrupts relying on their deterministic latencies. Even some early
GSM mobile phones employed this principle that in essence results in a multithreaded
system [13]. In those implementations fixed hand made schedules could be used. How-
ever, video coding has data dependent control flows, so the scheduling of the threads
and the allocation of hardware resources must be done dynamically. This can be per-
formed, for instance, by using a Just-In-Time (JIT) compiler. Figure 4 below illustrates
decoding an inter-macroblock using fine grained short latency hardware accelerators
with a schedule created from the contents of the video bit stream.

The accelerators, color conversion for display, inverse quantizer (IQ)+IDCT, and bi-
linear interpolator, have deterministic latencies, and the software uses the results when
they become available. Color conversion to display executes in hardware simultane-
ously with sequence and macro-block layer decoding. The threads alternate between
software and hardware execution without an interrupt based synchronization overhead.

Time

HW Threads

IQ+IDCT

Bilinear
Interpolation

Color 
Conversion

Seq 
Layer

MB
Layer

VLD
Get 
MV

Add Pred. 
& Diff.

WB VLD
Get 
MV

VLD
Get 
MV

IQ+IDCT

Bilinear
Interpolation

IQ+IDCT

Bilinear
Interpolation

Add Pred. 
& Diff.

WBSW Threads

Block 0 Block 1 Block 2

Fig. 4. Multithreaded decoding of an inter-macroblock from a coded video bit stream



Interface Overheads in Embedded Multimedia Software 13

To implement the hardware/software multithreading applications, efficient means for
generating the schedules are needed. One option is to employ a set of fixed schedules
to choose from based on the task at hand, while JIT compilers providefor more flex-
ibility, although at the cost of higher overheads. Such compilation techniques could
perhaps reduce the number of defined layers in software architectures, in turn providing
compensationary savings. From the system developer’s point of view fine grained ac-
celerators cut the design verification time and provide faster time-to-market capability.
The enabling missing elements appear to be on the side of software technology.

5 Summary

In computing intensive software applications, such as video coding, the interface over-
heads are in principle only a small portion of the total processor cycles. Much
of the overheads originate from the layered software architecture style, and are am-
plified by cache related phenomena due to the decreased locality of code execution and
data accesses. The operating systems have similar effects on the performance. In total,
the overheads can exceed the number of cycles needed by the actual application.

When improved energy efficiency is targeted by the utilization of hardware acceler-
ators, the software overheads may play a very significant role. Based on our experience,
even the multimedia framework software interfaces may demand more processor cycles
than the actual control of a hardware accelerator.

The efficiency of software/hardware interfaces is becoming a critical issue, because
of the increasing leakage currents of silicon implementations. This makes run-time sil-
icon re-use, for example, via fine grained acceleration very attractive. The conventional
interrupt driven approach for hardware/software interfacing results in high overheads,
in fact, much higher than in pure software implementations. If fine grained hardware
accelerators could be interfaced to software at the cost of software functions, flexible
energy efficient solutions could be implemented.

Current comparable MPEG-4 decoder implementations in hardware and software
(ARM11) need 5.6mW and 118mW of power, respectively, without operating system
and cache overheads that range between 20% and 100%. Solutions that fall between
these figures are needed. The proposed simultaneous hardware/software multithreading
is a possible option that is under investigation.

Multiprocessor implementations offer 20-50% improved energy efficiency in video
coding when older processor architectures are used instead of the most recent ones.
However, for the same performance, twice the silicon area is needed, resulting in higher
static power consumption due to leakage currents. Furthermore, interprocessor commu-
nications can add significant overhead that falls in to the range of middleware costs.

Acknowledgements

Numerous people have contributed to this paper by providing their comments, questions
and technical expertise. In particular, we wish to thank Mr. Jani Huoponen and Mr.
Jarkko Nisula from Hantro Products, and Mr. Kari Jyrkkä from the Nokia Corporation.



14 T. Rintaluoma, O. Silven, and J. Raekallio

References

1. Neuvo, Y.: Cellular phones as embedded systems. In: Solid-State Circuits Conference.
Volume 1. (2004) 32–37

2. Silven, O., Jyrkkä, K.: Observations on power-efficiency trends in mobile communication
devices. In: Proc. 5th Int. Workshop on Embedded Computer Systems: Architectures, Mod-
eling, and Simulation, LNCS 3553 (2005) 142–151

3. ARM: Processor core overview. In: www.arm.com/products/CPUs. (2005)
4. ARM: RealView Developer Suite. In: www.arm.com/. (2005)
5. Mogul, J., Borg, A.: The effect of context switches on cache performance. In: ASPLOS-IV,

Santa Clara, ACM (1991) 75–84
6. Sebek, F.: Instruction cache memory issues in real-time systems. Master’s thesis, Department

of Computer Science and Engineering, Mälardalen University, Västerås, Sweden (2002)
7. S. Park, Y.L., Shin, H.: An experimental analysis of the effect of the operating system on

memory performance in embedded multimedia computing. In: EMSOFT-04. (2004) 26–33
8. P.H.F.M. Verhoeven, J.H., Lukkien, J.: Network middleware and mobility. In: PROGRESS

workshop. (2001)
9. Hantro: 4100 MPEG-4 / H.263 Software Decoder. In: www.hantro.com. (2006)

10. Hantro: 8300 Multimedia Application Development Platform. In: www.hantro.com. (2006)
11. Symbian: Introduction to the ECOM Architecture. In: http://www.symbian.com/. (2006)
12. Hantro: Hardware and Software Video Codec IP. In: www.hantro.com. (2006)
13. Jyrkkä, K., Silven, O., Ali-Yrkkö, O., Heidari, R., Berg, H.: Component-based development

of DSP software for mobile communication terminals. Microprocessors and Microsystems
26 (2002) 463–474


	Introduction
	Mobile Video Codecs and System Platforms
	MPEG-4 Software Decoder
	MPEG-4 Hardware Decoder
	Multimedia Software Frameworks

	Energy Efficiency
	Directions for Development
	Summary


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




